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ABSTRACT 

 

Engineers are seeking alternatives to conventional heat transfer fluids and in an attempt to 

improve their thermal transport properties, they added thermally conductive solids into the 

conventional fluids resulting in a fluid called nanofluid. Nanofluid was suggested as an alternative 

solution to the problem and many publications reported its potential for heat transfer enhancement. 

This thesis describes the experimental study of 9.58% by vol. silica/water nanofluid flow through 

different flow geometries which are circular, hexagonal and rectangular ducts of close hydraulic 

diameter. The experiments are performed at uniform heat flux condition. The aim of this thesis is 

to determine experimentally the best duct geometry for optimal thermal performance in nanofluids.  

The effect of the cross-section of the flow geometry on the enhancement capability of 

nanofluid is the focus of this research and four different geometries of relatively equal hydraulic 

diameters were studied.  This study compares the result from the different duct geometries in order 

to identify the best flow channel for optimal heat transfer using nanofluids. Based on the test data, 

the thermal performance comparisons are made under three constraints (similar mass flow rate and 

Reynolds number). It was observed from the comparisons that the rectangular duct showed the 

highest heat transfer capability through a higher Nusselt number and heat transfer coefficients at 

for the silica/water nanofluid flow. The circular duct was next to the rectangular duct in thermal 

performance. There was no significant change in friction factor between the ducts for both water 

and nanofluid flow. 
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    Velocity gradient, shear rate [𝑠−1] 

𝑑𝑝    Diameter of nanoparticles [nm] 

𝑑𝑁   Diameter of the nanoparticle [nm] 

f    Friction factor 

𝑓𝑓   Fanning friction factor 

h    Convective heat transfer coefficient [W𝑚−2𝐾−1 ] 
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𝑘𝑓    Thermal conductivity of the base fluid [𝑊𝑚−1𝐾−1] 
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CHAPTER I 

INTRODUCTION 

1.1 Heat Transfer Enhancement 

Many engineering systems utilize fluids for their operation for different applications; either 

as fuel or coolant. One of the critical aspects of practical fluid engineering is the study of heat 

transfer for fluid flow through ducts under varying conditions such as different fluid velocities, 

duct geometries, and fluid viscosities at different range of temperatures.  

Engineers are seeking an efficient method to remove heat because heat removal is one of 

the main challenges in numerous industries such as transportation, manufacturing, especially in 

microelectronics and power generation where enormous heat is usually generated which will 

adversely affect the device without efficient cooling. The existing cooling methods are inadequate 

for the high amount of heat required to be removed in some advanced systems like in the 

microelectronics industries such as microchips which are integral part of computer processors used 

in everyday life. Many devices use smaller microchips, thereby requiring higher heat flux density 

and in order to efficiently manage the consequent heat dissipation; an adequate heat transfer 

method must be employed. It has been estimated that the next generation of computer chips will 

dissipate a localized heat flux above 10MW/m2 (Kaufui & Omar, 2010).  
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The knowledge of heat transfer applications is required in the design of piping systems and 

their added components like valves, pumps, fittings etc. for several industrial applications such as 

cooling in the electronics industries. Heat transfer applications is not only needed at industrial 

scale, but also for environmental conditioning of private and public buildings which makes it a 

very important for the wellbeing of the society. Heat transfer is an important process in thermal 

stations, food pasteurization, ventilating systems etc. which are achieved through some heat 

transfer devices such as evaporators, condensers and heat exchangers. 

Most industrial applications require flow channels that are of different geometries specific 

to each application which necessitates the need to study the behavior of fluids through ducts of 

different shapes because this is the reality in the industry compared to the basic circular ducts 

commonly used in laboratory investigations. Based on the foregoing, it is therefore pertinent to 

investigate the thermal and flow behavior of heat transfer fluids in ducts of different geometries 

under varying conditions.  One area of focus for this investigation is the study of heat transfer and 

pressure drop characteristics of the fluids when they flow through different duct geometries which 

are very useful in many industrial applications. In addition, practical heat transfer systems require 

an external force from a device such as the pump for the circulation of the working fluid and the 

associated power consumption can be reduced if the heat transfer fluid is enhanced. 

Convective heat transfer processes serve a pivotal role in many industrial and biological 

systems for cooling applications. Ultimately, engineers seek to maximize heat transfer with 

minimum input power and system size which is dependent on the type of heat transfer fluid and 

the system design.  Some of the several possible ways to improve the heat transfer efficiency are 

by the application of vibration to the heat transfer surfaces, usage of microchannels, usage of 

improved surfaces and by enhancing the inherent thermophysical properties of the heat transfer 
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fluid.  It was reported that enhanced surfaces such as fins and microchannels can significantly 

increase heat transfer rates (Alvarado, et al., 2007).  

Interestingly, recent advancements in heat transfer applications seek to optimize benefits, 

minimize losses by accommodating miniaturization and other cost reduction technologies because 

consumers desire products that are not only more compact and affordable but also more efficient 

making heat dissipation a matter of great concern. These growing trends in consumers’ demands 

also require an understanding of fluid behavior through the flow passages of different shapes and 

sizes to accommodate the different resulting design requirements.  

One of the very pertinent industrial applications is cooling; which is a significant technical 

challenge facing all industries because heat dissipation occur in most devices calling for adequate 

control in order to keep those devices running efficiently with minimal downtime. Cooling is very 

important in many industrial operations; ranging from air conditioning, transportation, power 

generation, microelectronics to refrigeration and can be achieved through the use of heat transfer 

fluids which are expected to be excellent thermal conductors. A heat transfer fluid could be 

described as a fluid medium (liquid or gas) which flow around or through a system so that heat 

can be added or removed from the system at an appropriate transfer rate in order to avoid system 

breakdown due to overheating. The conventional heat transfer fluids which are in use in the 

industry for decades are water, air, ethylene glycol and mineral oil which have relatively low 

thermal conductivities, compared to the higher thermal conductivity of some solids. So, an idea 

was suggested such that a mixture could be formed between the better thermally conductive solids 

and the less thermally conductive fluids to improve the thermal conductivity of the resulting 

mixture.  
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Cooling efficiency is enhanced when a better heat transfer fluid is used for cooling 

applications and several studies have been conducted in search for an enhanced heat transfer fluid 

as a means of achieving efficient heat dissipation for increased range of temperature operations 

and compact designs. The inherent physical properties of the fluid are what determine its suitability 

and efficiency for different heat transfer applications. In order to evaluate the heat transfer 

performance of a fluid against conventional fluids, it is necessary to characterize its 

thermophysical properties and other parameters such as the thermal conductivity, viscosity, 

pressure drop, and convective heat transfer coefficient.  

The conventional fluids are rather inadequate for the emerging industrial cooling needs 

because they score low on these thermophysical properties. For instance, a fluid having low 

thermal conductivity will be a poor heat transfer fluid. 

Water, the most common liquid coolant, has high heat capacity and low cost which makes 

it a fluid of choice for its low cost, safety and availability especially when additives such as 

corrosion inhibitors and antifreeze are added to it. For instance, in low temperature environments 

where temperature goes to below 0°C, ethylene glycol is added to water to prevent freezing. Also, 

pure deionized water is used as a coolant in electrical equipment because of its relatively low 

electrical conductivity and the commonest form of gaseous coolant is air. Hydrogen is also used 

because of its low density, and high thermal conductivity. 

1.2 Introduction to Nanofluids 

Some researchers carried out extensive studies on the thermal behavior of particulate solids 

dispersed in liquids through which they identified an approach for improving the physical 

properties of fluids such as the final thermal conductivity, viscosity etc. through the addition of 
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solid particles whose average diameter are in micrometers or millimeters, to the already existing 

traditional fluids in order to produce a more thermally efficient two phase colloid. A higher thermal 

conductivity is expected since these solid microparticles have better thermal conductivity 

compared to the base fluids.  

Surprisingly, they noted that despite the observed enhancements in the heat transfer, some 

drawbacks such as particle sedimentation, channel clogging, pressure drop, erosion of flow 

channels and abrasion of the particles were observed (Rostamani, et al., 2010). A potential reason 

for this problem could be the poor stability of the suspension which was even more pronounced in 

very small flow channels such as microchannels and minichannels. This observed drawback 

limited the practical applications of suspensions of solid microparticles in base fluids for heat 

transfer applications (Wang, et al., 2003; Keblinski, et al., 2002). Therefore, there is still a 

continued search for heat transfer fluids that can eliminate or minimize these drawbacks. 

Nanotechnology is a branch of technology that deals with manipulation of matter at atomic 

or molecular level with the purpose of creating superior materials with better properties. This 

technology has proven very promising in recent years especially in energy and healthcare sectors. 

The scientific community has experienced some improvements in nanotechnology and modern 

manufacturing technologies which have imparted the emergence of particles whose sizes are of 

the order of nanometers (nanoparticles).  A nanometer can be described as one billionth of a meter 

as shown in Figure 1.1. Consequent to the development of Nanotechnology, the idea of suspending 

these very small nanoparticles in a base liquid for improving thermal conductivity was proposed 

in 1995 (Choi & Eastman, 1995). These fluids are termed nanofluids, which resulted from the 

technological advancements in the field of modern nanotechnology and the intense research 

towards improving the performance of the existing heat transfer fluids.  
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Figure 1.1 Comparison of “nano” and “micro” sizes of many substances (Cristina, et al., 2007). 

 

 

Nanofluids are engineered colloids which produced by stably dispersing solid 

nanoparticles in a base fluid. The term nanofluid originated from the team of researchers at the 

Argonne National Laboratory in Illinois in 1995 (Gireesha & Rudraswamy , 2014; Choi & 

Eastman, 1995). These researchers discovered that dispersing solid nanoparticles in conventional 

base fluids such as water, ethylene glycol, mineral oil etc. has the potential of enhancing heat 

transfer because most of these conventional heat transfer fluids have low thermal conductivities. 

For instance, the thermal conductivities of water and ethylene glycol at 25°C are 0.58W/m-K and 

0.25W/m-K, respectively. In general, the solid particles dissolved in the base fluid include 

nanofibers, nanotubes, nanowires or nanoparticles. 

These solid nanoparticles are mostly metals or oxides of metals such as Al, Cu, SiC, TiC, 

Ag, TiO2, Au, SiO2, and Al2O3 which are used for the preparation of the colloids utilized in research 

and are expected to have high thermal conductivity. Carbon nanotubes (CNT) are also utilized due 

to their high thermal conductivity (≈ 500W/m-K) in the axial direction. Owing to the high cost of 
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this nanoparticle, metal oxide nanoparticles with thermal conductivity in the range of 10-40W/m-

K are used because the thermal conductivity is still two orders of magnitude higher than that of 

water. 

While fine particles have diameters ranging between 100 and 2500 nanometers, 

nanoparticles are ultrafine particles whose average diameter range between 1 and 100 nanometers 

(<100nm) implying a very small size. Particles that are as small as 10nm have been used in research 

(Eastman, et al., 2001). The shape of the nanoparticles usually used in research is spherical but 

rod-shaped and tube-shaped nanoparticles are also utilized.  

The resulting colloids from the dissolution of solid nanoparticles into conventional base 

fluids is called nanofluid which are much safer to handle as end products compared to their 

constituent nanoparticles. The main heat transfer enhancement opportunity observed in nanofluids 

was an abnormal increase in the thermal conductivity and viscosity (Gireesha & Rudraswamy, 

2014). According to the literature, nanofluids have better thermophysical properties and is capable 

of achieving better cooling performance compared to conventional liquids such as water. They 

were found to exhibit better thermophysical properties compared to the base fluid, such as thermal 

conductivity, thermal diffusivity and convective heat transfer coefficients (Huaqing, et al., 2011; 

Yimin & Qiang, 2000; Wei & Huaqing, 2012). Nanofluids are useful in the cooling applications 

in the industry such as cooling of personal computers, automobile radiators, lubrications, additives 

for fuels, and other devices. It has been suggested as a cooling fluid in nuclear reactors. The 

stability of nanoparticles while dispersed in the base fluid are usually improved by adding small 

amounts of some additives to the mixture. 

Many researchers have increased the popularity of the heat transfer capability of nanofluids 

through extensive research where they investigated the heat transfer performance and flow 
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characteristics of various nanofluids with different nanoparticles and base fluid materials. Through 

their discovery, nanofluids proved to eliminate some of the demerits of the rather large 

micrometer-sized particles mainly because of its smaller size which makes it to form better stable 

suspensions thereby eliminating the existing sedimentation and clogging problems inherent in the 

use of microparticles. Therefore, nanofluids are better heat transfer fluids especially for 

microchannels compared to microparticles-based fluids (Chein & Chuang, 2007; Lee & Mudawar, 

2007).  

Most studies suggested that nanoparticle clustering is of crucial importance for the thermal 

conductivity enhancement through nanofluids and the sedimentation of the particles can be 

minimized by using appropriate dispersants. Nanofluids have many potential advantages 

compared to the suspension of micrometer particles in traditional fluids, some of which are (a) 

better stability, (b) reduced penalty due to an increase in pressure drop and (c) higher thermal 

conductivities compared to the suspension of micrometer particles. In addition, it has been 

suggested that nanofluids are sufficient for cooling the rapid heat dissipation observed in small 

devices such as the microchips used in computer processors (Lazarus, et al., 2010). 

As a result of these advantages, a number of studies have been published on the effective 

thermal conductivity of nanofluids under macroscopically static conditions and on convective heat 

transfer of nanofluids. Therefore, nanofluids have some important merits over the conventional 

colloidal suspensions but studies have reported that its applicability in heat transfer systems is still 

restricted because of its high viscosity which increases the pumping power.  

1.2.1 Production of nanoparticles  
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Broadly speaking, the prominent production methods for nanoparticles are mainly the 

physical synthesis which comprises processes such as inert-gas condensation technique, 

mechanical grinding and the chemical synthesis comprising chemical vapor deposition (CVD), 

micro-emulsions, spray pyrolysis, thermal spraying, and chemical precipitation (Yu, et al., 2008). 

Manufacturing methods for nanoparticles can also be subdivided into the “bottom up” and “top 

down” approaches. The bottom up approach relies on growth and self-assembly of single atoms 

and molecules to form nanostructures which are very useful in creating identical structures with 

atomic precision while the top down approach relies on disintegrating large-scale material to 

generate required nanostructures from them which is superior for interconnectivity and integration 

that is very useful in electronic circuitry. 

1.2.2 Production of Nanofluids 

On the other hand, nanofluids are also produced through two main two methods (Das, et 

al., 2007). These methods are: one-step technique and two-step technique. The first step in the 

two-step technique is the production of nanoparticles and the second step is the scattering of the 

nanoparticles in a base fluid. The two-step technique is the mostly used method but it suffers from 

agglomeration of nanoparticles due to strong van der Waals force of attraction thereby preventing 

the realization of stable nanofluids due to flocculation. One of the advantages of the two-step 

technique is its appropriateness for mass production of nanofluids nanoparticles especially by 

utilizing the technique of inert gas condensation for mass production of nanoparticles (Romano, et 

al., 1997). One of the disadvantages of the two-step technique is the fact that nanoparticle clusters 

are formed during the preparation of the nanofluid leading to poor dispersion of nanoparticles in 

the base fluid (Yu, et al., 2008). 
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Because the quality of the dispersion produced in a nanofluid affects its thermal properties, 

some physical methods such as stirring and ultrasonication are employed to create stability in the 

nanofluid but the ability of these methods to produce long term stable dispersions is questionable 

(see Figure 1.2). Some other chemical techniques such as use of a stabilizing agent and surface 

treatment on nanoparticles are also used to stabilize the nanofluid.  

The one step technique is useful for producing stable nanofluids but it is more expensive. 

There are some variations of the one-step technique but this technique ultimately combines the 

production of nanoparticles and the dispersion of nanoparticles in the base fluid into a single step. 

One of the methods is called the direct evaporation one-step method which involves nanofluid 

production by the solidification of the nanoparticles, which are initially in gas phase, inside the 

base fluid (Eastman, et al., 2001). The problem of particle clustering associated with dispersion 

produced through one-step technique is better than the two-step technique. However, the 

prominent disadvantage of the one-step technique is that they are not appropriate for 

commercialization due to their limitation for mass production as a result of the high cost (Yu, et 

al., 2008). 
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Figure 1.2. TEM image of Al2O3/water nanofluid - 0.06% vol. concentration (Sommers, 2012). 

In adittion, the properties of the nanofluid used for this experimental investigation are given in 

the table 1 below: 

 

Table 1 

 

Properties of the SiO2/water Nanofluid 

 
Nanoparticles Silicon (IV) oxide 

Nanoparticles Conc. by 

Vol. 

9.58% 

Color/Odor Colorless/Odorless 

Morphology Spherical 

Density at 20 Celsius 1.2910 g/cm^3 

pH 9.51 
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1.3 Thermophysical Properties of the Fluid 

In order to adequately characterize the heat transfer and pressure drop behavior along ducts 

of various geometries, it is important to understand the underlying thermophysical properties of 

the fluid which are pertinent to understanding the thermal performance and rheology of the fluid. 

The variation of these thermophysical properties along the ducts under different conditions will 

help describe the behavior of the fluid especially determine if duct geometry affect the thermal 

performance of the fluid. 

1.3.1 Pressure Drop and Friction Factor 

Pressure drop is the difference in pressure between two points of a fluid as it passes through 

a channel. The drop in pressure results from frictional forces which reduces the flow of the fluid 

as it passes through the tube. The first thing step in considering pressure drop or pressure loss due 

to fluid flow in a pipe is to determine the friction between the fluid and the duct. This is often 

called friction factor and it is then incorporated into pressure loss or fluid flow calculations. 

Friction factor is not a constant but dimensionless parameter often used to quantify pressure drop 

in flow applications and it is directly related to the pumping power requirements in flow 

applications. In other words, low friction factor will imply a low power requirement. In general, 

pressure drop depends on parameters such as the surface roughness of the pipe which determines 

friction, vertical pipe difference or elevation, and change in velocity of flow. The key factors 

affecting the pressure drop as a fluid moves through a duct are Reynolds Number of the fluid and 

the roughness of the duct (smooth or rough duct). 

The famous Darcy–Weisbach equation (named after Henry Darcy and Julius Weisbach) is 

the equation often used, which relates the head loss or pressure loss due to friction along a given 
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length of duct to the average velocity of the fluid flow. The pressure loss (ΔP) can be expressed 

from the Darcy-Weisbach equation as follows: 

∆𝑃 = 𝑓
𝐿

𝐷𝑖

𝑉2

2𝑔
𝜌 = 𝑓𝑓

𝐿

𝐷𝑖
 𝜌2𝑉2         (1.1) 

The Darcy–Weisbach friction factor (𝑓) is 4 times the Fanning friction factor (𝑓𝑓) which was 

named after Thomas Fanning.  

That is, 𝑓 = 4𝑓𝑓 or 𝑓𝑓 =  
𝑓

4
         (1.2) 

Fluid flow regimes in industrial applications are mostly turbulent and they have more 

capacity to enhance heat transfer because of the presence of unsteady vortexes. Hence, there are 

many studies in the literature on the convective heat transfer of nanofluids in fully-developed 

turbulent flow regime because they are crucial for practical applications. However, pressure drop 

information is also essential in order to use nanofluids as heat transfer fluids in industrial 

applications because it affects pumping power. Researchers have proposed several models for 

pressure drop of different nanofluids under different flow regime.  

Some researchers have proposed a model for predicting the pressure drop of TiO2/water 

nanofluids in fully developed turbulent flow by using a GA–PNN hybrid system which depends 

on Reynolds number, nanoparticle volume concentration and average nanoparticle diameter. The 

GA–PNN hybrid system consists of a neural network and the genetic algorithm part which was 

used to find the best network weights for minimizing the training error and finding the optimal 

structure for a GMDH-type polynomial neural network. They compared their results with 

experimental data points and with other existing correlations through which they concluded that 
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the proposed models are in good agreement with experimental data and show better accuracy with 

experimental data in comparison with the existing correlations (Meyer, et al., 2013). 

1.3.2 Forced Convective Heat Transfer and Nusselt Number 

Convective heat transfer is simply heat transfer by convection, which is the most dominant 

mode of heat transfer in fluids-liquids and gases. Convection is the process by which heat is 

transferred between a surface and a fluid through the movement of fluids due to density differences 

caused by temperature variations in the fluid. The application of heat at the boundary layer causes 

a temperature rise which leads to a reduction in density of the fluid. This change in the density will 

cause the fluid to rise and be replaced by cooler fluid which will also be heated and rise until the 

temperature is uniform leading to boiling. For this reason, boiling and condensation are convective 

heat transfer processes. In reality, convection involves conduction, diffusion and bulk motion of 

molecules (advection). 

Convection may be forced or assisted and natural or free. The later involves movement of 

fluids and transfer of heat by natural buoyancy forces, which is when the fluid heat transfer 

happens without the aid of an external source such as fan etc. The forced convection is the direct 

opposite which happens with the help of an external source of power such as pumps or through 

thermal expansions. Newton described the heat transfer per unit surface through convection using 

the equation: 

𝑞 =  ℎ𝑐𝐴𝑑𝑇           (1.3) 

Forced convection heat transfer takes place when a fluid is moving past a solid surface and 

one of the major parameters for estimating it is the forced convective heat transfer coefficient. 

Forced convective heat transfer coefficient correlations are often expressed in terms of Nusselt, 
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Prandtl, and Reynolds numbers. A dimensionless number called Nusselt number is often used to 

quantify the convective heat transfer. The Nusselt number is the ratio of the convective heat 

transfer to the conductive heat transfer; which implies that convection is efficient with a high 

Nusselt and less dominant with a low Nusselt number. 

Mathematically, the Nusselt number is written as: 

𝑁𝑢𝐷 =
ℎ𝐷

𝑘
           (1.4) 

The evaluation of Nusselt number is dependent on the Reynolds number and the Prandtl 

number based on the flow regime (laminar or turbulent). A turbulent flow is characterized by a 

high Nusselt number. For a developing laminar flow, the Nusselt number slowly decreases from a 

higher value and approaches to a constant value of 4.36 under fully developed conditions for 

constant heat flux and a value of 3.66 under a fully developed isothermal condition. 

1.3.3 Viscosity 

Viscosity can be described as a measure of a fluid’s resistance to flow; that is; the resistance 

of a fluid to a change in its shape. It may also be defined as a measure of the internal friction 

between the molecules of a fluid; such friction opposes the development of velocity differences 

within a fluid. Therefore, a fluid with is very thick (large viscosity) will resist motion because its 

molecular makeup gives it a lot of internal friction while a fluid with low viscosity flows easily 

because its molecular makeup results in very little friction when it is in motion. This internal 

friction results when layers of fluid slide past each other causing shearing between the layers of 

fluid. The viscosity of a fluid is a measure of its tendency to resist flow which is the ratio of the 

shear stress (τ) to the shear rate (
𝑑𝑢

𝑑𝑦
). A constant viscosity measurement in any fluid indicates a 

Newtonian behavior whereas if it varies with shear rate, such a fluid is a non-Newtonian fluid. 
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Viscosity is a major factor in determining the forces that must be overcome when fluids 

are used in flow applications because it affects the pumping power requirement and the workability 

of the fluid. Viscosity is measured using a viscometer and the reciprocal of viscosity is called 

fluidity that is; a measure of the ease of flow. The viscosity of liquids decreases with an increase 

in temperature while the viscosity of gases increases with an increase in temperature. Thus, upon 

heating, liquids flow more easily, whereas gases flow more reluctantly. Therefore, viscosity is 

temperature dependent. The viscosity of a fluid is a measure of its resistance to gradual 

deformation by shear stress or tensile stress.  

Since viscosity is a measure of resistance to the movement of one layer of fluid over another 

adjacent layer of the fluid, assume that there are two layers of fluid with a distance, 𝑑𝑦 and 

velocities u and (𝑢 + 𝑑𝑢) respectively. The viscosity will cause a shear stress (τ) between the fluid 

layers as the layers move over one another with relative velocity. 

Mathematically, τ =  μ
𝑑𝑢

𝑑𝑦
         (1.5) 

Viscosity is often used as a criterion for classifying fluids as follows: 

(i.) Newtonian Fluid  

Many fluids are Newtonian which implies that the tangential, or shearing, stress that causes 

flow is directly proportional to the rate of shear strain, or rate of deformation, that results. Put 

simply, the shear stress divided by the rate of shear strain is a constant called the dynamic, or 

absolute, viscosity for a given fluid at a fixed temperature. Hence, a Newtonian fluid is such fluid 

whose value of viscosity remains constant when the strain rate is varied at a given temperature and 

some examples of Newtonian fluids are water and air. In a Newtonian fluid, the plot between the 

shear stress and the shear rate is linear, passing through the origin. 
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(ii.) Non-Newtonian fluid 

A non-Newtonian fluid is the opposite of Newtonian fluid whose value of viscosity changes 

with the variation of the strain rate at a given temperature. This means that when the strain rate is 

varied, the shear stress does not change in the same proportion at a given temperature. Non-

Newtonian fluids are classified based on the variation of their viscosities, however, viscosities is 

not sufficient to describe the mechanical behavior of a non-Newtonian fluid. There is a need for a 

more extensive understanding of other properties to better articulate their rheological behavior. In 

general, non-Newtonian fluids are called pseudoplastic (shear thinning behavior), if they show a 

decreasing viscosity while the strain rate is increasing, and if they exhibit an increasing viscosity 

while the strain rate is increasing, they are called dilatant (shear thickening behavior). It is worthy 

of note that nanofluids can behave as both Newtonian and Non-Newtonian fluids under different 

conditions. In a non-Newtonian fluid, the relationship between the shear stress and the shear rate 

is non-linear, and can sometimes be time-dependent. 

1.3.4 Thermal Conductivity 

In order to describe heat transfer in any material, the thermal conductivity of such material 

must be considered. In fact, the rate of heat transfer in a material depends on the temperature 

gradient and the thermal conductivity of the material. Thermal conductivity therefore, is the 

property of the material to conduct heat. It is primarily expressed in Fourier's Law for heat 

conduction and its unit is watts per kelvin-meter. The reciprocal of thermal conductivity is thermal 

resistivity. 

In mathematical terms, Fourier’s law for heat conduction is as follows: 

𝑄

𝐴
= 𝑘

𝑑𝑇

𝑑𝑦
           (1.6) 
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From the above equation, we can infer that thermal conductivity depend on the heat flow 

per unit area and the temperature gradient. Some other factors that can influence the thermal 

conductivity of a material are the structure of the material, composition of the material and phase 

change of materials. The value of thermal conductivity of a material will significantly affect the 

heat transfer rate. For instance, a material of higher thermal conductivity will transfer heat faster 

than that of a lower thermal conductivity. For this reason, materials of higher thermal conductivity 

are used in heating and cooling applications while materials with lower thermal conductivity are 

used for insulation applications. 

1.4 Objectives of the Research 

The use of nanofluids for enhancing heat transfer is attractive in a range of applications. 

Some   studies have shown that with a relatively higher enhancements in thermal properties of heat 

transfer fluid, the potential for enhancement in heat transfer applications is considerable and 

extensive studies on the enhancements in convective heat transfer and pressure drop characteristics 

of nanofluids are available in literature. However, these results have not been experimentally 

compared for different flow geometries based on available literatures. 

The main objective of this research is the investigation and comparison of the forced 

convective heat transfer and pressured drop characteristics of aqueous suspensions of 9.58% by 

volume concentration 𝑆𝑖𝑂2/water nanofluid in ducts of different geometries. The ducts geometries 

considered are rectangular, square, hexagonal and circular of comparable sizes, with the hydraulic 

diameters being the basis for comparison. The experimental results from each geometry was 

analyzed and compared with one another. The SiO2/water nanofluid was characterized by 

measuring the thermophysical properties from which the pressure drops and heat transfer behavior 

were studied.  
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The experimental set up and methodology was validated using distilled water and the result 

was compared with existing result from literature. After the validation using distilled water, the 

SiO2/water nanofluid was then passed through the different geometries. Some of the goals of this 

research is to find out if the duct geometry affects the heat transfer enhancement capability of the 

NF, measure the friction factors and convective heat transfer coefficient of the NF over a range of 

Reynolds number covering the laminar, transition and the early stage of turbulent regime. 

The motivations for this research are: (a) little work was found from literature that 

compares the convective heat transfer characteristics of SiO2/water nanofluid through flow 

channels of various geometries; (b) little work was found in literature on the pressure drop 

characteristics of SiO2/water nanofluid in ducts of various geometries and, (c) some 

inconsistencies from the reported results on the pressure drop convective heat transfer 

characteristics of SiO2/water nanofluid. 

1.5 Structure of the Thesis 

 

The rest of the thesis is as follows: 

Chapter II comprises a detailed review of literature from various sources regarding 

experimental and theoretical studies on the pressure drop characteristics, thermal conductivity, and 

convective heat transfer characteristics of nanofluids.  

Chapter III discusses the experimental setup, experimental procedure and the uncertainty 

associated with the measurements.  

Chapter IV discusses the validation of the experimental procedure through experimental 

results of distilled water, presents the experimental results on pressure drop and convective heat 

transfer of the nanofluid, and compares the results with established correlations.  
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Chapter V comprises summary of the research, important conclusions, and some 

recommendations for future work.  
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CHAPTER II 

 

LITERATURE REVIEW 

 

The continued search for super-efficient and energy-saving heat transfer fluid has opened 

a world of opportunities for research towards discovering new working fluids of better thermal 

properties which is useful under different conditions. This quest led to the discovery of nanofluids 

which contain solid particles whose characteristic size is less than 100 nm.  This increasing demand 

for high thermally conductive working fluid has generated a lot of publications focused on the 

characterization of the thermophysical properties of several nanofluids such as Nusselt number, 

effective viscosity, effective thermal conductivity, thermal diffusivity, specific heat capacity, 

Prandtl number, and so forth, with which researchers investigate the convective heat transfer and 

pressure drop characteristics of nanofluids (Wang, et al., 2009; Wang, et al., 2009).  

Many publications resonated the fact that increasing the thermal conductivity of base fluids 

by suspending nanoparticles in them would enhance the convective heat transfer coefficient, 

viscosity and the effective thermal conductivity of the base fluid because solids generally have 

inherent high thermal conductivity which will eventually enhance heat transfer (Salman, et al., 

2014). Although the degree of enhancement through thermal conductivity continues to be a matter 

of debate amongst different research groups, little research was performed on the potential effect 

of flow passage geometry on heat transfer enhancement. Basically, very little literature was found 

on the impact of duct geometry on heat transfer enhancement with nanofluid as the working fluid. 

The literature available on nanofluids is huge and varied but for the sake of this research, the 



www.manaraa.com

 

22 
 

review will be focused on the aspects relevant to the thermal conductivity, pressure drop and heat 

transfer performance of nanofluids. 

2.1 Convective Heat Transfer of Nanofluids 

A survey of the thermal properties of many liquid coolants available today for heat transfer 

applications showed a rather poor thermal conductivity compared to the higher thermal 

conductivities of solid metals and based on the emerging needs, better heat transfer fluids are being 

sought (Rostamani, et al., 2010). Several studies have been conducted to investigate convective 

heat transfer of nanofluids and over 1000 published research works on the opportunities of 

nanofluids for heat transfer enhancement are growing over the last decade (Haghighi, et al., 2014). 

A good amount of research have been focused on the reported higher thermal conductivity of 

nanofluids compared to traditional fluids and many fluid engineers have made efforts to increase 

the thermal conduction of the cooling fluid through certain techniques such as agitation, increase 

in surface area, or addition of solid particles but this yielded limited improvement for base fluids 

of very inherent low thermal conductivity. Therefore, it is necessary to find an effective method to 

improve the thermal conductivity of the base fluid (Rostamani, et al., 2010).  

The idea of adding solid nanoparticles to the base fluid with the hope of increasing the 

thermal conductivity of the resulting fluid mixture has received a lot of attention evident in many 

literatures. There is still some disagreement in the literature about the claims of the research groups 

regarding whether nanofluids show unusual thermal properties caused by dispersing little amount 

of nanoparticles in a base fluid resulting in drastic increase in thermal conductivity and heat 

transfer coefficients of the nanofluid (Hwang, et al., 2009; Anoop, et al., 2009; Wen & Ding, 

2004). Most of these published works show the capacity of nanofluids to enhance the parameter 

that cause heat transfer in fluids.  
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For instance, through a numerical investigation of turbulent forced convection flow of 

CuO/water, TiO2/water and Al2O3/water nanofluid mixture with different volume concentrations 

of nanoparticles in a long horizontal duct while varying different properties under constant heat 

flux condition, it was found that the shear stress, the Nusselt number and the heat transfer 

coefficient of the nanofluids are strongly dependent on the volume concentration of nanoparticles 

and these thermophysical properties increase by increasing the volume concentration of 

nanoparticles (Rostamani, et al., 2010).  

For this particular study, the nanofluid used is a mixture of water as the base fluid with the 

three different nanoparticles are dispersed in it at different concentration ranging from 0 to 6% by 

volume. The standard 𝑘 − 𝜀 turbulence model was used to predict the kinetic energy and the 

dissipation rate in the turbulent flow and the Reynolds number at the inlet was varied from 20,000 

to 100,000. The base fluid was water and all the thermophysical properties of nanofluid mixture 

are temperature-dependent. The Nusselt numbers predicted for each of the nanofluid was in good 

agreement with other well-established correlations such as the Gnielinski correlation (see Figure 

2.2) and could be used to predict the heat transfer behavior of nanofluids (Rostamani, et al., 2010).  

In addition, Rostamani, et al., (2010) validated their model using water in the turbulent 

regime by comparing the Darcy friction factor and the Blasius correlation with theoretical result 

from which they observed a good agreement (see Figure 2.1) which proved that the numerical 

procedure was reliable for predicting turbulent forced convection flow in a horizontal duct. They 

observed that the effect of CuO nanoparticles to enhance the Nusselt number is better than Al2O3 

and TiO2 nanoparticles under constant volume concentration of the nanoparticles and constant 

Reynolds number. In addition, the viscosity of the nanofluids was obtained from experimental data 

(Rostamani, et al., 2010).  
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Figure 2.1 Comparison of the Darcy friction factor and the Blasius formula against the computed 

values for water in turbulent regime (Rostamani, et al., 2010). 
 

Very recently, Haghighi, et al., (2014) experimentally studied the convective heat transfer 

coefficients of 9wt% Al2O3-water and 9wt% TiO2-water nanofluids inside pipe circular tubes 

under turbulent flow with constant heat flux at the walls and specifically discussed methods of 

comparing the performance of these two nanofluids. The experimental investigation was carried 

out independently by the Royal Institute of Technology, KTH (Sweden) and the University of 

Birmingham (UK) whose experimental data agreed very well. From their results, the experimental 

data indicated that Nusselt numbers and friction factors of the nanofluids are well correlated by 

the equations developed for single phase fluids within a margin of 20% and 10% respectively. 
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These result validated the assumption that heat transfer and pressure drops of nanofluids can be 

predicted satisfactorily by using conventional correlations developed for single phase fluids.  

Interestingly, the authors noted that the idea of comparing the thermal performance of 

nanofluid at equal Reynolds number with a focus on the viscosity is not practically relevant 

because heat transfer can always be increased by increasing the flow rate; implying that equal 

pumping power is a better basis for comparison because it accounts for the total cost of removing 

the heat from the system (pumping cost). Surprisingly, this method of comparison is still used in 

the literature (Mojarrad, et al., 2014; Abreu, et al., 2014; Sundar, et al., 2014; Ebrahimi, et al., 

2014). In addition, it was observed that, at equal pumping power, the heat transfer coefficient of 

Al2O3 nanofluid was the same as that of water while that of TiO2 was about 10% lower. Finally, 

they concluded that both nanofluids did not show any benefit for cooling applications in turbulent 

flow since the increases in viscosities were higher than the enhancements of heat transfer 

coefficient thereby requiring higher pumping power. 

In an experimental investigation, Yimin & Qiang (2003) studied the characterization of a 

Cu-water nanofluid which flows through a straight tube with a constant heat flux under both 

laminar and turbulent flow conditions. They reported that the suspended nanoparticles 

significantly enhanced the heat transfer performance of the traditional base fluid and their friction 

factor agreed well with that of the water. In addition, they proposed new convective heat transfer 

correlations for prediction of the heat transfer coefficients of the nanofluid for both laminar and 

turbulent flow conditions. It was reported that the dispersion of solid nanoparticles in traditional 

fluids changes their thermal conductivity and viscosity. Moreover, due to less pressure drop in 

noncircular ducts, the heat transfer rates through them is smaller compared to that of circular tubes 

and consequently the addition of nanoparticles to traditional heat transfer fluids may enhance heat 
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transfer properties of noncircular ducts. A new correlation was proposed which accounts for the 

microconvection and microdiffusion effects of the suspended nanoparticles. 

However, the authors observed that the Dittus-Boelter correlation could not predict the 

dependency of the Nusselt number of the nanofluid on the volume fraction of nanoparticles 

because of its validity for only single-phase flow especially when the volume fraction of the 

nanoparticles is larger than 0.5 percent. In addition, they reported that the friction factor for the 

dilute Cu-water nanofluids is approximately the same as that of water so that the low volume 

fraction of the suspended nanoparticles does not lead to additional penalty of pump power. 

Majority of the published works on nanofluid heat transfer enhancement centered on flow 

through circular ducts. However, it is equally important to investigate the convective heat transfer 

and flow behavior of nanofluid through noncircular ducts because noncircular ducts such as 

hexagonal, rectangle, and square geometries are prevalent in many industrial heat transfer 

applications especially towards the realization of a more compact heat exchanger. It was reported 

that an increased effort is being directed at saving costs of energy, material and labor by producing 

a more efficient heat exchanger because heat transfer enhancement depend on fluid performance 

and the cost of manufacturing (Kakac, et al., 1981). As a result, ducts of varied geometries will 

experience increased utilization for heat transfer applications. Some analytical solutions of heat 

transfer and pressure drop for laminar flows in different duct geometries are available in the 

literature (Shah & London, 1978). 

In order to assess the impact of duct geometries on losses during heat transfer, an 

investigation was performed to determine the optimum duct geometry that minimizes losses by 

comparing the entropy generation and pumping power for a range of laminar flows and constant 

heat flux. The duct geometries considered are circular, square, equilaterally triangular, rectangular 
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with an aspect ratio of 1/2 and sinusoidal with an aspect ratio of √3/2. From the result, it was 

observed that the circular geometry is the best, especially when the frictional contributions of 

entropy generation becomes critical and  the triangular and rectangular duct geometries are not 

good choices for both entropy generation and pumping power. The hydraulic diameters were used 

for the different geometries since they are noncircular (Sahin, 1998).  

An aqueous solution of various-sized gold nanoparticles, that is, gold-deionized/water 

nanofluid flowing through a conventional heat pipe of a diameter 6 mm and length 170 mm was 

investigated for heat transfer performance. From the result, it was deduced that the nanofluid 

causes a significant reduction in the thermal resistance of the heat pipe compared with only 

deionized water at given concentrations. Furthermore, the thermal resistance of the heat pipes for 

the nanofluid was lower than that of water which implies that the higher thermal performances of 

the nanofluid have proved its potential as a substitute for conventional water in vertical circular 

meshed heat pipe. Hence, the addition of gold was significant for heat transfer enhancement (Tsai, 

et al., 2004). 

In a numerical investigation, Jahanshahi, et al. (2010) studied the effect of SiO2 

nanoparticle on heat transfer in a square cavity whose volume fraction of nanoparticle are between 

0 and 4% and Rayleigh number of water between 105 and 107, subject to different side wall 

temperatures. The thermal conductivity of the nanofluid was measured experimentally. Their result 

showed that increasing the nanoparticle concentration for the range of Rayleigh numbers causes 

an observable enhancement in the local Nusselt number and heat transfer. In addition, it was 

observed that the heat transfer increases by increasing the Rayleigh number for a particular volume 

fraction. 
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Through an experimental study, Pak & Cho (1998) observed and analyzed the convective 

heat transfer and the friction factor in the turbulent flow regime using Al2O3 and TiO2 nanoparticles 

dispersed in water. From their result, they concluded that the effect of Reynolds number on the 

heat transfer enhancement was negligible and the Nusselt number of the nanofluids increased with 

increasing volume fraction of the suspended nanoparticles.  

In an experimental investigation of the convective heat transfer coefficient of Al2O3/water 

and CuO/water nanofluids at different concentrations for laminar flow through circular tube under 

a constant wall temperature boundary condition, the results showed that the single phase 

correlation for thermophysical properties is not sufficient to predict heat transfer enhancement of 

nanofluids. Also, the experimental results showed that heat transfer coefficient increases with 

increasing nanoparticles concentrations and increasing Peclet number for both nanofluids. 

However, the Al2O3-water nanofluids showed greater enhancement compared with CuO-water and 

the convective heat transfer coefficient of pure water increased to 41% and 38% at 3% volume 

concentration of Al2O3 and CuO nanoparticles respectively (Heris, et al., 2006).   

An experimental study of heat transfer on Al2O3-water nanofluid flowing through a copper 

tube in laminar flow under constant wall heat flux, Wen & Ding (2004) observed an increase in 

nanofluid heat transfer coefficient with Reynolds number and nanoparticles concentration 

particularly at the entrance region and it decreases with axial distance.  Also, it was shown that the 

classical Shah correlation was insufficient to predict the heat transfer behavior of nanofluids. 

However, they suggested that the enhancement of the convective heat transfer could not be only 

attributed to the enhancement of the effective thermal conductivity and one possible reason 

identified for the enhancement was migration of nanoparticles which could cause a non-uniform 
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distribution of thermal conductivity and viscosity field and a resulting reduction and disturbance 

of the boundary layer thickness. 

A numerical study on forced convection flow of Al2O3-water and Al2O3-ethylene glycol 

nanofluids inside a uniformly heated circular tube subject to a constant heat flux boundary 

condition (50W/cm2) on its wall was carried out by a group of researchers. The result showed that 

the presence of nanoparticles significantly increased the heat transfer at the tube wall for both the 

laminar and turbulent regimes which was even more significant with increasing particle 

concentration. In contrast, this addition of nanoparticles had an adverse effects on the wall friction 

(wall shear stress) which is more pronounced for the Al2O3-ethylene glycol nanofluid with 

increasing particle concentration. The results also indicated that the Al2O3-ethylene glycol 

nanofluid gives a better heat transfer enhancement than the Al2O3-water mixture. From the study, 

they derived a new correlation for the Nusselt number (Maiga, et al., 2004).  

Some researchers conducted an experiment through which they studied the heat transfer 

and flow behavior of TiO2-water nanofluid flowing in an upward direction through a vertical pipe 

in both the laminar and turbulent flow regimes under a constant heat flux boundary condition. The 

observed results depicted that the convective heat transfer coefficient increased with an increase 

in nanoparticle concentration in both the laminar and turbulent flow regimes at a given Reynolds 

number and particle size (He., et al., 2007). 

A research was conducted on the application of aluminum oxide nanofluid in diesel electric 

generator as jacket water coolant through which they demonstrated that owing to the better 

convective heat transfer coefficient of the nanofluid, the efficiency of waste heat recovery heat 

exchanger increased (Kulkarni, et al., 2008). Many published works on nanofluid heat transfer 

properties and enhancement centered on flow through circular ducts but it is important to equally 
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investigate the convective heat transfer properties of nanofluids through noncircular ducts as well 

because noncircular ducts (hexagonal, rectangle, square etc.) are prevalent in many industrial heat 

transfer applications especially in compact heat exchangers (Sahin, 1998). 

An investigation into the heat transfer enhancement and the behavior of the Al2O3-water 

nanofluid flowing under a turbulent flow regime inside the cooling system of microprocessors or 

other electronic components was carried out. Their results showed that the nanofluid gave a larger 

heat transfer coefficient than the base fluid and that the nanofluid with smaller particle diameter 

provided a higher heat transfer coefficient (Nguyen, et al., 2007).  

An experimental investigation into the heat transfer capability of CuO/deionized-water nanofluid 

as it flow through copper tube under laminar flow was performed. Their results showed that the 

heat transfer enhancement was increased considerably as the Reynolds number increased and they 

reported 8% enhancement of the convective heat transfer coefficient of the nanofluid at 0.003% 

volume concentration of CuO nanoparticles (Asirvatham, et al., 2009). 

In an experimental investigation, Liu et al., (2007) studied the forced convective heat 

transfer characteristics by passing deionized water through quartz microtubes of inner diameters 

of 242, 315 and 520μm for Reynolds number ranging from 100 to 7000. From their results, an 

agreement between the experimental Nusselt number and the laminar correlations when the flow 

state was laminar was observed. Through a numerical investigation, Lelea (2010) studied the 

effects of temperature dependent thermal conductivity on Nusselt number behavior in stainless 

steel microtubes using three different fluids which has temperature dependent fluid properties 

under laminar flow.  The microtube has a diameter ratio of 
𝐷𝑖

𝐷𝑜
⁄ = 0.1/0.3 mm and a tube length 

of 70 mm. The Reynolds number range was less than 400. From their results, they inferred that 
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provided the Reynolds number was kept low, the thermal conductivity has a significant influence 

on the behavior of the local Nusselt number. 

An investigation on nanoparticles within conventional phase change materials such as 

water was performed by some researchers. Their findings show that nanoenhanced phase change 

material (NEPCM) has great potential for demanding thermal energy storage applications 

(Khodadadi & Hosseinizadeh, 2007). An experimental study on the turbulent convective heat 

transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube was performed and 

it was reported that the convective heat transfer coefficient was enhanced by 25% at a low 

concentration of copper oxide between 0.015% and 0.236% volume fractions (Fotukian & 

Esfahany, 2010). In a numerical study of the heat transfer of turbulent flow of CuO, Al2O3, SiO2 

nanoparticles with ethylene glycol and water as base fluids with different volume concentration 

flowing in a tube under constant heat flux condition. They measured the nanofluid viscosity and 

developed correlations for the nanofluid viscosity as a function of temperature up to 10% of 

volume concentration. From their results, it was observed that the heat transfer coefficient 

increases with increasing volume concentration of the nanoparticles (Namburu, et al., 2009).  

In a numerical study, the effect due to the uncertainty in the values of the physical 

properties of Al2O3/water nanofluid on their thermohydraulic performance for laminar fully 

developed forced convection in a two zone tube was studied. The results revealed that the heat 

transfer coefficient of Al2O3/water nanofluid is increased by 3.4–27.8% under a fixed Reynolds 

number compared with that of pure water (Minea, 2013). Some authors presented a numerical 

study of Al2O3/water nanofluid with a two-phase Eulerian model and compared with single- and 

two-phase model. They showed that the new model which was implemented by them gave rise to 
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more accurate results. In addition to the studies on the thermophysical properties, nanofluids have 

been developed to improve the mass transfer performance in thermal systems (Lotfi, et al., 2010).  

Some of the passive conventional methods used to enhance the heat transfer rate includes 

extended or rough surfaces, swirl flow, and active techniques with surface or fluid vibration and 

mechanical aids (Webb & Kim, 2005). Enhanced surfaces are employed in thermosystems to 

enhance the heat transfer rate and this is possible because the thermal conductivities of the solid 

phases are comparatively greater than that of the working fluids such as water, ethylene glycol etc. 

Most solids have higher thermal properties compared to the traditional working fluids; hence, 

which is the basis for adding solid additives to the conventional fluids as a means of enhancing the 

heat transfer performance of the traditional fluid. This research approach is in high demand (Liu, 

et al., 2006; Visinee & Somchai, 2010). These metallic or nonmetallic particles are added so that 

they can change the transport properties and heat transfer characteristics of the base fluid.  

Before the introduction of the nanoparticles to this application, microparticles were used 

for heat transfer enhancement but due to their size, they had the disadvantage of settling quickly, 

clogging flow channels, eroding pipelines and causing severe pressure drops which could damage 

the pipe over time (Li & Xuan, 2002). Nanoparticles on the other hand is devoid of that problem 

because they operate based on Brownian motion which keeps them permanently suspended and 

when they are in equilibrium with no flow, they are distributed in a balance between buoyant force 

and thermal agitation. The contribution of Brownian motion of the nanoparticles to the overall 

thermal conductivity of the nanofluid is very crucial. 

At the Argonne National Laboratory, it was the first discovered by a scientist who 

identified and demonstrated the special ability of this class of fluid which he called nanofluids; a 

fluid that he presented as having the capability to significantly improve the total heat transfer 
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coefficient of the fluid and augment the amount of heat transported or transferred in various 

thermal systems (Choi & Eastman, 1995). Nanofluids are colloidal suspensions, i.e., a unique class 

of nanometer-sized [<100nm] particles of high thermal properties dispersed in a base fluid such as 

water or ethylene glycol which has the capacity to enhance the thermal properties of the base fluid 

(Eastman, et al., 1996; Guo, et al., 2010). The last few years have witnessed a rapid growth in 

published papers on the applications of nanofluids especially in the transportation sector (engine 

cooling/vehicle thermal management), electronics cooling, enhanced oil recovery, nuclear systems 

cooling, heat exchanger, biomedicine, drilling fluids etc. (Sommers & Yerkes, 2010; Visinee & 

Somchai, 2010). 

Nanofluids are very promising as the next-generation heat transfer fluids as they offer 

exciting opportunities for heat transfer enhancement compared to the traditional fluids and their 

successful employment will aid the current trend towards component miniaturization by enabling 

the design of smaller and lighter heat exchanger systems (Wang & Mujumdar, 2007). Some 

common examples of nanofluids are the alumina and silica nanofluids and their enhanced 

thermophysical properties are due to the larger surface area and the thermal conductivity of the 

solid nanoparticles dispersed in the base fluid. They have some unique characteristics; some of 

which are better thermophysical properties, long lifetime and low toxicity that contribute to their 

heat transfer enhancement capabilities.  

The three different approaches used by several research groups to study the behavior of 

nanofluids are:  

 Experimental: achieved by investigating their thermal properties and heat transfer 

correlations; 
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 Empirical: through the investigation of their thermal properties and similarity solutions; 

 Numerical: by single phase and two phase approaches. 

However, there are more published results from experimental investigation compared to 

the empirical and numerical approaches (Das, et al., 2007). Some of the early attempts to 

numerically explain the behavior of nanofluids made use of the famous Maxwell model for 

statistically homogenous, isotropic composite materials with randomly dispersed spherical 

materials. Since the Maxwell model is more applicable to micro particles, its prediction for 

nanoparticles does not agree with experimental results. However, in order to improve the 

predictability of nanofluids, Hamilton and Crosser modified the Maxwell’s model to accommodate 

non-spherical particles which is the model widely in use today (Hamilton & Crosser, 1962). 

The heat transport properties of nanofluids have been experimentally discovered to depend 

on the type, the size, the concentration, the shape and the thermal conductivity of the suspended 

particles, the conductivity of the base fluid and temperature (Wang & Mujumdar, 2007). Small 

concentrations of nanoparticles dispersed in base liquids have been found to significantly increase 

the thermal conductivity of the base fluids (Choi, et al., 2001; Das, et al., 2003; Ding, et al., 2006; 

He., et al., 2007). The enhancement of forced laminar-flow was more significant at the entrance 

region and an increase in the convective heat transfer coefficient was also observed (Heris, et al., 

2007; Pak & Cho, 1998).  

The following are some of the factors that could contribute to the heat transfer enhancement 

capability of nanofluids when compared to solid-liquid suspensions for heat transfer 

intensifications:  

 greater specific surface area and hence, heat transfer between particles and base fluid; 
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 lower pumping power required to achieve the equivalent heat transfer in traditional fluids; 

 higher stability of the colloidal suspensions; 

 higher level of control of the transport properties through a variation of particle size, 

concentration, shape to suit different applications; 

 Reduced particle clogging compared to conventional slurries.  

The technical community holds varying views about the methods used to experimentally 

investigate the thermal conductivity of nanofluids and several other factors such as poor 

characterization of suspensions, lack of agreement between results, and the lack of theoretical 

understanding which have limited the utilization of nanofluids for industrial applications (Kwak 

& Kim, 2005; Keblinski, et al., 2002; Sommers, 2012). There’s still a differing view about the 

cause of the significant heat transfer since the reasons identified which are Brownian motion, 

liquid-solid interface layer and surface charge state have not satisfactorily explained the anomalous 

behavior of the nanofluids. In a recent publication, particle clustering was identified as the reason 

for the significant thermal properties of nanofluids (Pawel, et al., 2005).  

Some of the possible reasons why there is no universally acceptable theory on the behavior 

of nanofluids could be: 

 The thermal behavior of nanofluids does not conform to the already established solid-solid 

particle interaction. For instance, the thermal conductivity for a solid-solid interaction 

should reduce with decreasing grain size but it was observed to increase in nanofluids. 

 A multidisciplinary approach which involve knowledge of material science, physics, 

chemistry etc. is necessary in order to understand the unique behavior of nanofluids and 

their performance.  
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Published works in the nanofluids research area have established the fact that nanofluids 

enhance heat transfer but this behavior was observed at high concentration of the nanoparticles. 

Their high viscosity is a concern yet to be exhaustively considered against the viscosity of 

conventional fluids and the heat transfer enhancement was observed to be particularly significant 

at the entrance region. It is pertinent to validate the trade-offs between the use of nanofluids and 

conventional fluids for heat transfer enhancements. The characterization of the heat transfer rate 

as the fluid is forcefully pushed through these ducts will be measured but we need to quantify how 

it differs compared to water as the traditional fluid. The rheological analyses of nanofluids have 

shown that they can exhibit both Newtonian and non-Newtonian behavior depending on factors 

such as particle concentration, particle size and shape and viscosity of the base fluid etc.  

2.2 Pressure Drops Characteristics of Nanofluids 

The experimental investigation of the convective heat transfer and pressure drop of water-

based Al2O3 nanofluids under laminar fully developed flow regime was carried out. From the 

experimental data, two correlations was proposed for calculating the thermal conductivity and 

dynamic viscosity of nanofluids as a function of temperature as well as nanoparticle volume 

fraction. They also observed that the pressure loss for the nanofluids was about 5.7 times higher 

than that of pure water and the pressure drop of the nanofluid increased with increasing the volume 

fraction of nanoparticles. They measure all the physical properties required to calculate the 

convective heat transfer and the pressure drop and concluded that the Al2O3 nanofluids incur large 

penalty in pressure drop in the laminar flow regime (Heyhat, et al., 2013).  

Some researchers performed an experimental study of the convective heat transfer and 

pressure drop of turbulent flow of TiO2-water nanofluid through a uniformly heated horizontal 

circular tube. The nanofluid was prepared by dispersing spherical TiO2 nanoparticles of 15 nm 
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nominal diameter in distilled water to form stable suspensions. Their results showed that heat 

transfer coefficients in unaffected by a change in the Reynolds number but increases with 

increasing the nanofluid volume fraction (Kayhani, et al., 2012). 

2.3 Thermal Conductivity and Viscosity of Nanofluids 

The thermal conductivity of Al2O3 and CuO nanofluids with water and ethylene glycol as 

the base fluids were experimentally investigated by a group of researchers. Their thermal 

conductivities were measured by a transient hot-wire method and they observed that thermal 

conductivity of the nanofluids did not only depend on the shape of the nanoparticle but also the 

size of the nanoparticles. The experimental results show that these nanofluids have substantially 

higher thermal conductivities compared to the base fluids. They compared the result from 

experiment with the numerical model (Hamilton and Crosser) from which they observed that the 

model can predict the thermal conductivity of nanofluids containing large agglomerated particles 

(Lee, et al., 1999).  

In an experimental research, (Jeong, et al., 2013) investigated under different nanoparticle 

volume concentrations ranging from 0.05% to 5.0 vol. %, the effect of the shape of nanoparticle 

on the viscosity and thermal conductivity of ZnO-water nanofluids. Their result showed that the 

viscosity of the nanofluids increased with corresponding increase in the volume concentration by 

up to 68.6% for both the nearly rectangular and spherically shaped nanoparticles. The enhancement 

of the viscosity of the nearly rectangular shape nanoparticles was greater than that of the spherical 

nanoparticles by 7.7%. In addition, the thermal conductivity of the nanofluids increased for both 

shapes of the nanoparticles compared to that of the base fluid. The author stated that one possible 

reason for the observed difference in viscosity and thermal conductivity of the nanofluid in 

comparison with the base fluid can be attributed to the effective aggregate radius of the nanofluid 
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for each of the nanoparticles. From these results, it was concluded that the shape of the particles 

has a significant effect on the viscosity and thermal conductivity enhancements of nanofluids. 

An experimental investigation on TiO2 nanoparticles, with spherical and rod-like shapes 

and dispersed in deionized water for the purpose of assessing the heat transfer performance on the 

basis of thermal conductivity of the resulting nanofluid, was performed by some researchers.  Their 

result indicated that both the nanoparticle size and shape have effects on the enhancement of 

thermal conductivity (Murshed, et al., 2005).  

Through an experiment investigation on the thermal conductivity of three nanofluids 

comprising: Al2O3, CuO, and ZnO nanoparticles dispersed in a base fluid of 3:2 (by mass) ethylene 

glycol and water mixture. The particle volumetric concentration tested was up to 10% and the 

temperature range of the experiment was from 298 to 363K. The results indicated that the thermal 

conductivity of the nanofluids was enhanced with increases in the volumetric concentration of the 

nanoparticles and the thermal conductivity increased substantially with increase in temperature. In 

addition, they compared the experimental data with existing models for thermal conductivity from 

which they observed a poor agreement. Consequently, a new model was developed which is a 

modification of an existing model, incorporating the classical Maxwell model and the Brownian 

motion effect to account for the thermal conductivity of nanofluids as a function of temperature, 

particle volumetric concentration, the properties of nanoparticles, and the base fluid, which agrees 

well with the experimental data (Vajjha & Das, 2009).  

According to an experiment conducted by (Kole & Dey, 2012) through which they 

investigated the thermal conductivity and viscosity of surfactant free ZnO/ethylene glycol 

nanofluid, the viscosity of the nanofluid showed transition from Newtonian behavior at lower ZnO 

concentration to non-Newtonian characteristics at higher ZnO content and lower temperatures but 
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more importantly, the viscosity of the nanofluid was found to be nearly independent of ZnO 

nanoparticle loading. In addition, the large thermal conductivity enhancement and marginal 

viscosity penalty of the nanofluids were attributed to the superior fragmentation and uniform 

distribution of ZnO nanoparticle clusters in the base fluid. Through some research work to study 

the thermophysical properties of nanofluids especially the characterization of the viscosity of 

different nanofluids, it was observed that the measured viscosity is higher than the existing 

theoretical predictions (Maiga, et al., 2004; Nguyen, et al., 2007).  
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CHAPTER III 

EXPERIMENTAL SETUP AND METHODOLOGY 

An experimental rig was designed and built for the purpose of studying the thermal 

performance of the nanofluid through different duct geometry (see Figure 3.1). The validity of the 

result of an experiment is directly impacted by its construction and execution, which implies that 

attention to experimental setup and the method employed are very important. Therefore, it is 

pertinent to take time and effort to organize the experiment properly to ensure that the right type 

of data, and enough of it, is available to answer the questions of interest as clearly and efficiently 

as possible. Unfortunately, some authors have reported different results on the thermophysical and 

heat transfer parameters of nanofluids which is likely traceable to the method of obtaining the data. 

Therefore, it is very critical in order to minimize the measurement uncertainties and obtain accurate 

data.  

This chapter discusses in detail, the experimental setup for obtaining the viscosity, pressure 

drop, thermal conductivity, viscosity and heat transfer measurements of silica nanofluids. The 

experimental setup, which comprises temperature control system, viscosity measurement system, 

thermal conductivity measurement system, the flow loop, calibration of instruments, determination 

of best experimental procedure and experimental uncertainties are discussed in detail.   
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3.1 Experimental Loop 

The closed experimental loop comprises the mass flow meter, the gear pump, the reservoir, 

pressure transducers, the data acquisition unit, the thermocouples, the DC power supply unit and 

heat exchangers which are all connected using a ¼ inch stainless steel and flexible PVC tubing. 

The flexible tubing is incorporated in this experimental loop to accommodate different lengths of 

the test section. This flow loop can facilitate experiments for fluids flowing through tubes ranging 

from 6 mm to 500 μm I.D. 

 

Figure 3.1 Schematic of flow loop for pressure drop and heat transfer measurements (Tiwari, 2012). 

The reservoir houses the working fluid which were the NF and distilled water depending 

on the purpose of the experiment and the working fluid is circulated through the entire flow loop 

and then flow back to the reservoir. The gear pump provides the power for pumping the working 
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fluid to the entire flow loop and the counter-flow heat exchanger connected right after the gear 

pump removes the heat added during the fluid flow.  

A second heat exchanger right after the test section removes any heat gained by the fluid 

when passing through the heated test section. The Coriolis mass flow meter measures the mass 

flow rate in the loop which is varied using a metering valve. Three pressure transducers are 

connected, one at the inlet and another at the outlet of the test section to measure the pressure drop 

with the other one for comparing the readings. These pressure transducers, connected for 

redundancy are expected to display the same readings under normal circumstances.  The DC power 

supply unit supplies the current for heating up the test section during the heat transfer portion of 

the experiment. The thermocouples are cemented axially at equal distances along the test section 

for pressure drop and heat transfer analysis. The flow loop consisting of the pressure transducer, 

DC power supply and the mass flow meter are connected to the data acquisition unit (Agilent) for 

data gathering and further analysis.  

3.1.1 The Reservoir 

The reservoir is a cylindrical container made from PVC having a capacity of 15 liters and 

with diameter of 0.25m, length 0.3048m (see Figure 3.2) placed at about one meter above the gear 

pump in order to maintain the constant flow of the working fluid during the experiment. At the 

bottom of the reservoir a piping connects to the gear pump while at the top a bypass line and the 

line from the loop are connected. 
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Figure 3.2 Flow loop reservoir. 

3.1.2 Gear Pump 

A standard duty sealed gear pump shown in Figure 3.3, (model 35 F), manufactured by 

Liquiflo from stainless steel and which operates at variable speed with maximum rated speed of 

1750 RPM and rated for a maximum flow of 13 LPM and maximum ΔP of 100 Psi was used for 

this experiment. Its suction side is connected to the reservoir and its discharge side is connected to 

a Tee dividing the flow through the closed loop and a bypass. It can support a minimum 

temperature of -40 degree Celsius, a maximum temperature of 260 degree Celsius and a maximum 

viscosity of 100,000 mPas. The gear pump has a wear plate which is a sacrificial part of the pump 

designed to protect the front and the rear housing from wear caused by continual contact with the 

sides of the gears. 
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Figure 3.3 The Liquiflow sealed gear pump 

3.1.3 Mass Flow Meter 

The mass flow meter shown in Figure 3.4 is a Micro Motion mass transmitter with an 

accuracy of ±0.05% of the flow rate connected to a 1700R model transmitter. The meter works 

based on the principle of the Coriolis Effect which is a deflection of moving objects when the 

motion is described relative to a rotating reference frame.   

 

Figure 3.4 Micro Motion mass flow sensor connected to a 1700R model transmitter. 
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3.1.4 Pressure Transducers 

Three Rosemount pressure transducers (model 3051) were used to measure different 

pressure gauges with an accuracy of +0.65% of span and connected to the inlet and outlet of the 

test section (see Figure 3.5). The first pressure transducers to the left captures the lowest pressure 

drops between 0 and 9 psi, the middle one is between 0 and 36 psi and the one to the far right 

measures between 0 and 300 psi. These pressure transducers are connected in parallel so that each 

of them captures the same pressure readings for a given flow rate but more importantly, they are 

connected in parallel so that a more accurate reading may be obtained. This arrangement is 

particularly useful to compensate for error in any of the transducers. The data acquisition unit is 

programmed to produce an alarm if a pressure drop reading is above the maximum for a given 

transducer after which a valve on the pressure transmitter isolates that particular transmitter.  

 

Figure 3.5 Three Rosemount pressure transmitters (model 3051) connected in parallel. 

3.1.5 Data Acquisition Unit 

The data acquisition unit used for this experiment was manufactured by Agilent 

Technologies, Inc. (model 34972A) with a 20 channel multiplexer (see Figure 3.6). It measures 
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different input signals including temperature with thermocouples and is backward compatible with 

the USB 2.0 for easy connectivity to the PC. All thermocouples, mass flow meter, pressure 

transducer are attached to the channels of multiplexer for direct capture of measurements. The 

Agilent Benchlink Data Logger 3 is a free software used to control and program the channels, set 

the number of scans and capture data. The data acquisition unit is connected to the PC via a USB 

cable and the experiment was programmed to stop after 100 scans for each mass flow rate. 

 

Figure 3.6 The Agilent data acquisition unit (model 34972A). 

3.1.6 Thermocouples 

One of the two thermocouples used for this experiment is a Neoflon PFA-insulated copper-

constantan T-type quick disconnect thermocouple with miniature connector (see Figure 3.7). It is 

made from a 36 AWG thermocouple wire manufactured by Omega Engineering Inc. (model TT-

T-36-SLE-1000). The tips of the two cables from the thermocouple was welded to form one 

thermocouple tip which are then cemented axially at equal intervals along the test section with the 

help of a high temperature and thermally conductive epoxy and catalyst from Omega (part no. 08-
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101-16) . Special caution was taken to ensure that the tip was as small as possible so that 

measurement from each cemented point on the test section is very accurate. The thermally 

conductive epoxy was used to cement the thermocouples to the surface of the test section which 

also act as an electrical insulator, protecting the thermocouple and ensuring accurate temperature 

readings at specific points along the test section. 

 

Figure 3.7 T-type thermocouple. 

The second thermocouple, from Omega Engineering Inc. (model no. TMQSS-020U-6) is 

a copper-constantan 304 SS Sheath T-type quick disconnect thermocouple with miniature 

connector which are used for capturing the bulk fluid inlet and outlet temperatures at the entry and 

exit of the test section respectively. This thermocouple is 0.020 inches sheath diameter and 6 inches 

length and its welded tip is inserted into the middle of the flow path of the fluid with the help of a 

tee and a reducing compression fitting from Omega Engineering Inc. (part no. SSLK-116-18, 

1/16*1/8). The thermocouple is then attached to the data acquisition unit where the bulk 

temperature is recorded. 
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3.1.7 DC Power Supply 

The DC power supply is required for the heat transfer measurements in order to capture 

the temperature at each test points on the test section. The DC power supply is the N5761A from 

Agilent Technologies (see Figure 3.8), having a with single rated output of 6 V / 180A, 1080W 

and a measurement accuracy of ±300mA for current and ±6mV for voltage. The output from the 

DC power supply is connected to the test section through a copper strip silver soldered to the two 

ends of the test section using the epoxy. It also feature a remote load sensing control circuit that 

compensates for the voltage drop in the wires or improve load regulation.  

 

Figure 3.8 N5761A Agilent DC power supply unit. 

3.1.8 Test Section 

For this research, four test sections of different geometries are investigated.  The first and 

main test section is a rectangular brass C260 hollow bar, ASTM 135 of 3/32" in height, 3/16" in 

width, 0.014" in wall thickness and 12" in length (see Figure 3.11). The second test section is a 

square brass C260 hollow bar, ASTM 135 having 3/32" in height, 3/32" in width, 0.014" in wall 

thickness and 12" in length (see Figure 3.12), the third test section is a hexagonal brass C260 



www.manaraa.com

 

49 
 

hollow bar having 3/32” in width across Flats, 0.014" in wall thickness and 12" in length (see 

Figure 3.13) and a circular brass C260 hollow bar, ASTM 135 having 1/8" in diameter, 0.014" in 

wall thickness and 12" in length .   

The rectangular test section had ten thermocouples placed on its wider and smaller sides 

for capturing the temperature along the length of the test section. However, it is shown in Figures 

3.9 and 3.10 that the placement of the thermocouples on either side of the test section had no 

significant effect on the measured temperatures. 

 

    Figure 3.9 Plot of Temperature vs. Dimensionless distance x+ for rectangular test section (laminar regime). 
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Figure 3.10 Plot of Temperature vs. Dimensionless distance x+ for rectangular test section (transition 

regime). 

 

These test sections are connected to the flow loop with the help of graphite/polyimide 

ferrules of 40% graphite / 60% polyimide which help to seal and prevent leaks between the flow 

loop and the test section. These polyimide ferrules are able to support maximum operating 

temperature of 400°C because of their lower coefficient of expansion compared to other polyimide 

resins, thereby reducing the tendency of the nuts loosening during the heated experiment. 
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Figure 3.11 Rectangular test section with thermocouples tips cemented axially along the surface and two 

copper strips at the end for supplying DC power. 

 

 

 

Figure 3.12 Square test section with thermocouples tips cemented axially along the surface using Omega bond 

cement. 
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Figure 3.13 Hexagonal test section with thermocouples tips cemented axially along the surface and two 

copper strips at the end for supplying DC power. 

 

3.1.9 Heat Exchangers 

For this experiment, two counterflow heat exchangers were used to regulate the heat. They 

were fitted coaxially to the ¼ inch tubing in the flow loop at the entry and exit. The purpose of the 

heat exchanger placed just after the gear pump is to eliminate the heat added from the pump and 

maintain a steady inlet temperature to the test section and the second heat exchanger was placed 

after the test section to remove the heat added during heating of the test section for the heat transfer 

experiments. These heat exchangers are each ½ inch diameter stainless steel tubing with length of 

38 inches; fitted with the help of a ½ inch Tee connection and a Swagelok tube fitting on both 

ends. The Swagelok tube fitting possesses a ½ inch thread connected to the Tee at one end and a 

¼ inch compression fitting at the other end which maintains a seal between the ½ inch tubing and 

the ¼ inch tubing while the other free end of the tube is connected to a cold water supply by a ½ 

inch PVC tubing. 
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3.2 Experimental Procedure 

The following are the actions taken in an attempt to investigate the behavior and 

characteristics of nanofluids as they flow through small diameter tubes. Two major measurements 

are made: pressure drop and heat transfer measurements. 

3.2.1 Pressure Drop Measurement 

1. Begin by starting the data acquisition unit, the pressure transducers, the gear pump, the mass 

flow meter and the Agilent software on the PC. 

2. Adjust the speed of the pump to match the desired mass flow rate and use the metering valve to 

get the actual flow rate while ensuring that the bypass valve is open to limit the strain on the pump. 

3. Open the reservoir for fluid flow and open the cold water tab to supply the heat exchangers 

Observe the pressure transducers for stability since the pressure transducers should indicate very 

close readings. 

4. Allow about 5 minutes for the system to reach steady state and then take the first data set to 

obtain the minimum and maximum values of the mass flow rate for the entire experiment. 

5. Increase the speed of the gear pump and fine tune again using the metering valve until the next 

desired mass flow rate is achieved. Allow 5 minutes for stability and then take the readings. These 

readings are exported to the Microsoft Excel format via the Agilent software for further analysis.  

6. Continue to increase the speed of the pump to get the next mass flow rate and stop when the 

maximum flow rate is reached. Continue to observe unexpected performance from the devices or 

readings to detect errors at an early stage. 
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3.2.2 Heat Transfer Measurements 

1. The heat transfer measurement is completed concurrently with the pressure measurements in 

order to save time and take readings at the same set of flow rates. For this purpose, a fiber glass 

insulation (R-25) was used to properly insulate the test section at the beginning of the experiment. 

3. After the initial pressure drop measurement is recorded, proceed by turning on the DC power 

supply. Ensure that the bypass valve is open and keep the cold tap water running to supply the heat 

exchanger. This is the time to record the corresponding heat transfer measurement for that 

particular mass flow rate. 

4. Allow about 10 minutes for the system to reach a steady state after which the data can be 

recorded and exported to Microsoft Excel for further analysis. It is important to observe the data 

captured for unexpected errors and to verify a steady state.  

5. Return the DC power supply back to zero readings to allow the test sections to cool down for 

the next pressure measurements while maintaining the cold water supply to the exchanger. 

5. After the first reading, subsequent heat transfer measurements are recorded concurrently with 

the pressure measurements.  The only difference between these two measurements is the fact that 

the DC power supply is turned on during the heat transfer measurement for the purpose of heating 

the test section. It is returned to zero readings after the readings are captured. 

6. The process is repeated until maximum flow rate has been achieved. The bulk fluid temperature 

difference between the inlet and the outlet should not be less than 2.5oC, otherwise halt the 

experiment. 
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7. Always ensure that the DC power supply is turned off first and then the pump because stopping 

the pump first while heating the test section will create excessive heat in the test section with no 

fluid flowing. This might damage the test section and even the thermocouples. For nanofluid, 

excessive heat can cause dry out and clog up the test section. 

3.3 Experimental Uncertainties 

 

3.3.1 Friction Factor 

The friction factor is given by the Darcy-Weisbach equation which is expressed mathematically 

as: 

𝑓 =
2∆𝑃𝐷ℎ

𝜌𝐿𝑉2           (3.1) 

The velocity term in this relation is computed as: 

V = 
𝑚

𝜌𝐴𝑖
           (3.2) 

The flow area (rectangular test section) is given as: 

A = 𝑤𝑙           (3.3) 

Therefore, the velocity can be written as:  

V = 
𝑚

𝜌𝑤𝑙
          (3.4) 

Finally, the friction factor can be written as: 

𝑓 =
2∆𝑃𝐷ℎ𝜌𝑤2𝐿

𝑚2           (3.5) 
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Hence, the Equation (3.5) above shows that the friction factor depends upon 1) pressure 

drop, 2) inside diameter of the test section, 3) density of the fluid flowing through the test section, 

4) length and width of the test section, and 5) mass flow rate of the fluid. The uncertainty inherent 

in determining the pressure drop, mass flow rate and the length of the test section can be controlled 

depending on the accuracy of the procedure employed for data gathering. However, the uncertainty 

in certain parameters such as test section internal diameter depends on the product’s accuracy from 

the manufacturer and the accuracy of the pressure transmitter is already specified as +0.65% of 

span from the manufacturer.  

While taking readings, careful attention was given so that the process reached steady state 

and all of the three transducers were reading the same pressure drop. However, when taking 

readings with water at low Reynolds number and higher tube diameter, the uncertainty in the 

measurement of pressure drop seemed to be high which were indicated by slightly different reading 

of the three pressure transmitters. The situation seemed better when using nanofluid as the working 

fluid. In this case the readings from the lower range pressure transmitter were used for data 

analysis. 

The uncertainty in the inside diameter of the test section is a major factor that affects the 

measurement of friction factor. From Equation 3.5 it is clear that the friction factor relates to the 

fifth power of the inside diameter. The tolerance provided by the manufacturer is 0.002 inches. 

The accuracy of the mass flow meter is specified as ±0.05% of the flow rate. Here also extra 

attention was given to capture a steady state process. The uncertainty of the tube length is 

determined by the accuracy of the measurement scale used for measuring the tube. The least count 

of the measurement scale used is ± 0.25 inches. Repeated measurements were taken to avoid any 

error. The uncertainty for the length of the tube is given as ± 0.25 inches. The operating range of 
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the experiment was from 5°C till 60°C. It is assumed that the particle density stays constant over 

this range whereas the density of water may change slightly.  

3.3.2 Heat Transfer 

The heat transfer is quantified in terms of the Nusselt number. The Nusselt number is given as: 

𝑁𝑢 =
ℎ𝐷𝑖

𝑘
           (3.6) 

The convective heat transfer coefficient is calculated from the following equation 

ℎ =  
𝑞

𝑇𝑤𝑖−𝑇𝑏
           (3.7) 

 

𝑞 =  
𝑑𝑄

𝜋𝐷𝑖𝑑𝑥
           (3.8) 

The inside wall temperature Twi is calculated from the outer wall temperature 𝑇𝑤𝑖 by using the 

conduction equation given as: 

𝑇𝑤𝑖 =  𝑇𝑤𝑜 −
𝑞𝐷𝑖𝑥

2𝑘𝑠𝐿
𝑙𝑛

𝐷𝑜

𝐷𝑖
         (3.9) 

The bulk fluid temperature is assumed to vary linearly from the inlet of the test section to the outlet 

and for any axial distance along the test section, it is given as 

𝑇𝑏,𝑥 =  𝑇𝑏,𝑖𝑛 +  
𝑥

𝐿
(𝑇𝑏,𝑜𝑢𝑡 − 𝑇𝑏,𝑖𝑛)         (3.10) 

 

 

3.4 Calibration of Instruments 
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3.4.1 Thermocouple Calibration 

The accuracy of result for the heat transfer measurements are influenced by the temperature 

measurements which are captured by the thermocouples. This implies that all the thermocouples 

used in this experiment must be calibrated to validate their accuracy. Both types of thermocouples 

were calibrated using the temperature bath and an RTD. The temperature range for calibration was 

from around 7–70°C, which falls under the operating temperature range for this experiment. It can 

be seen from Figures that the thermocouple readings are in close agreement with the RTD readings 

in the temperature range of 7–70°C. The maximum difference between the calibrated 

thermocouples and the RTD is 0.31°C. 

3.4.2 Viscometer Calibration 

The Brookfield viscometer was calibrated from the manufacturer but its accuracy needs to 

be validated for the experiment and a standard calibration fluid with a viscosity of 493 cP at 25°C 

was used for that purpose. The same procedure for measuring fluid viscosity was followed using 

the enhanced UL adapter. The results of the calibration for the standard viscosity fluid are shown 

in Figure 3. From the figure, it can be inferred from the heating curve that the viscosity at 25°C 

was 493.09 cP and for the cooling curve, the viscosity at 25°C was 494.39 cP. These values lie 

within the uncertainty of the instrument (±2 cP) and it implies that the procedure for taking the 

viscosity measurements was accurate. 

 

 

3.4.3 Pressure Transmitters Calibration 
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In order to calibrate the three pressure transducers, a pneumatic hand pump from Ametek 

(model T-970, range 0 to 580 psi), shown in figure 3.18 and digital electronic gages from Dwyer 

(model DPG-107, range 0–300 psi, and model DPG-104, range 0–50 psi). By exerting pressure 

definite amount of pressure from the hand pump, the output voltage from the transducers was 

recorded. This measurement was used to calibrate the pressure transducers according to the 

following procedures: 

1. Connect the digital pressure gauge to the hand pump. Then connect the hand pump to the high 

pressure side of the pressure transmitter. 

2. Apply certain amount of pressure by pumping the hand pump. Leave the system for about 2 

minutes. If the pressure has reduced, check the connections for leak using soap solution. 

3. Apply certain amount of pressure and record the voltage corresponding to the pressure. 

4. Increase the applied pressure by 5 psi and record the voltage. Repeat this step until the higher 

range of the pressure transmitter has been reached. 

5. Repeat the same steps for other two pressure transmitters. 
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CHAPTER IV 

RESULTS AND DISCUSSIONS 

This chapter focuses on the presentation and discussion of the experimental findings. The 

experimental data for the four test sections of different geometries was analyzed and compared 

with relevant correlations. The main working fluid for the experiment was a 9.58% by volume 

fraction of SiO2/water nanofluid containing nanoparticles of an average size of 20 nm. The 

thermophysical properties of water and the SiO2/water nanofluid, that is; the viscosity and thermal 

conductivity; measured by (Sharif, 2015) was used to analyze the experimental data from the 

experiment. For the validation of the experimental methodology, distilled water was passed 

through the flow loop and the result was compared with existing data from literature. 

4.1 Validation of the Experimental Procedure Using Distilled Water 

 

Working from theory, it was necessary to ascertain if the experimental methodology was 

correct and suitable for generating the experimental result and to validate the accuracy of the 

instruments. This was achieved by passing distilled water through the flow loop before passing the 

main working fluid (SiO2/water nanofluid) through it with the intention of matching the available 

data for distilled water. This validation was necessary to ascertain the accuracy and reliability of 

the experimental system for capturing the rheological behavior of the main fluid which is 

nanofluid. In addition, water was used for the validation because there are well established data 
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for water in the literature and based on the fact that repeatability of these data within a certain 

allowable margin of error validates the correctness of the methodology. 

4.2 Thermophysical properties of Distilled Water 

 

As stated earlier, the viscosity and thermal conductivity data for distilled water measured 

by (Sharif, 2015) was validated in this work in comparison with existing data from literature. These 

thermophysical properties are only needed for the analysis of the experimental data for this thesis 

but it is not the focus of this work. 

4.2.1 Thermal Conductivity Result of Distilled Water 

Amongst all the thermophysical properties studied, thermal conductivity has been 

identified as the main property responsible for the enhancement observed in nanofluids. The 

standard values of the thermal conductivity of distilled water within the temperature range of 1oC 

to 45oC was extracted from literature (Ramires, et al., 1994). It was then compared with the 

experimental data.  Figure 4.1 shows the plot that compares the experimental and standard thermal 

conductivity vs. temperature for distilled water.  

 

Figure 4.1 Comparison between experimental and standard values of thermal conductivity of distilled water. 
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It can be observed that the experimental value of the thermal conductivity of water matches 

that of the standard values available in literature with ±1% margin of error. As a result of the 

observed agreement between the experimental and standard values of the thermal conductivity, it 

can be inferred that the methodology is suitable for thermal conductivity measurement and 

appropriate for nanofluid which is the main working fluid under investigation. As expected, the 

experimental thermal conductivity of water increases with increasing temperature for temperature 

range of 0oC to 45oC.  

4.2.2 Friction Factor Results of Distilled Water 

Again, in order to demonstrate the validity and accuracy of the methodology for measuring 

the friction factor of the nanofluid, just like a model should be verified if it were a numerical 

investigation, the Darcy-Weisbach equation shown in Equation 4.1, valid for laminar flow was 

used to calculate the friction factor of water using the experimental data. This equation, valid for 

estimating the friction factor of Newtonian fluids is expressed as: 

𝑓 =
2∆𝑃𝐷ℎ

𝜌𝐿𝑉2            (4.1) 

But, recall that,                    𝑓𝑓 =  
𝑓

4
        (4.2) 

Consequently,              𝑓𝑓 =
∆𝑃𝐷ℎ

2𝜌𝐿𝑉2        (4.3) 

The calculated experimental friction factor was then compared with existing theoretical relation 

valid for single phase Newtonian fluids such as distilled water. In fluid mechanics, it has been 

established that the fanning friction factor for water flowing through circular, smooth ducts is 

shown in Equation (4.4) below (White, 2008): 
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𝑓𝑓 =
16

𝑅𝑒
            (4.4) 

However, the values of the friction factors for other noncircular ducts which are also investigated 

in this work are stated for rectangular, hexagonal and square ducts in Equations (4.5), (4.6) and 

(4.7) respectively (Cengel, 2007). 

𝑓𝑓 =
15.55

𝑅𝑒
            (4.5) 

𝑓𝑓 =
15.05

𝑅𝑒
            (4.6) 

𝑓𝑓 =
14.23

𝑅𝑒
            (4.7) 

The Darcy-Weisbach relation shown in Equation (4.3) above clearly shows that fanning 

friction factor is a function of pressure drop, the hydraulic diameter of the test section, the density 

of the fluid, the length of the test section and the velocity of the fluid which are experimentally 

determined. Throughout this analysis, the Equation (4.3) was used to estimate the experimental 

fanning friction factor which is ¼ of the Darcy friction factor as shown in Equation (4.2). These 

calculated experimental fanning friction factors were plotted against Reynolds number for the four 

duct geometries which are rectangular, square, circular and hexagonal geometries in the laminar 

regime and compared with relevant correlations. The plot is compared with the values calculated 

from Equation (4.8) given by Morrison (2013) correlation valid for all Reynolds number (laminar, 

transitional, and turbulent) as shown in Figure 4.2. Owing to the fact that the four test sections 

have very close hydraulic diameters and equal length of 12 inches, the hydraulic diameter was 

used as a basis for their comparison. The hydraulic diameters of the rectangular test section is 

0.093 inch while that of the hexagonal, circular and square test sections is 0.097 inch.  
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𝑓 = [
0.0076(

3170

𝑅𝑒
)0.165

1+(
3170

𝑅𝑒
)

7.0 ] + 
16

𝑅𝑒
        (4.8) 

From the plot shown in Figure 4.2, it is evident that the experimental values of friction 

factor of all the ducts lie within ±20% of what was predicted by the Morrison (2013) correlations 

for the laminar regime. This observation validates the methodology and the reliability of the 

experimental rig for measuring friction factor and was subsequently used or the measurement of 

the friction factor of the silica/water nanofluid. 

 

Figure 4.2 Plot between the experimental fanning friction factors of water in different test sections vs. 

Reynolds number compared with Morrison (2013) correlations. 
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±15% error. The theoretical relation predicted the experimental fanning friction factors for the 

circular and the rectangular duct with ±10% and ±20% respectively. This observation validates the 

experimental setup and methodology for pressure drop and friction factor measurements and will 

consequently be extended to the nanofluid.  

Also, it was observed that transition occurs at different Reynolds number as shown by the 

deviation in flow pattern in the Figures 4.3-4.6 below. To be more precise, transition occurs in the 

square, hexagonal, circular, and rectangular ducts at Reynolds numbers of approximately 2260, 

2000, 1900 and 2200 respectively. This observations showed that the duct geometry affect when 

transition occurs in fluids. The point where transition occurs depend on the smoothness of the 

entrance but for this research, the smooth was assumed to be smooth. 

 

Figure 4.3 Comparison of the experimental friction factor and theoretical friction factor vs. Reynolds number 

for water in square duct. 
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Figure 4.4 Comparison of the experimental friction factor and theoretical friction factor vs. Reynolds number 

for water in hexagonal duct. 

 

 

 

Figure 4.5 Comparison of the experimental fanning friction factor and theoretical friction factor vs. the 

Reynolds number for water flowing in the circular duct. 
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Figure 4.6 Comparison of the experimental friction factor and theoretical friction factor vs. Reynolds number 

for water in rectangular duct (aspect ratio 2:1). 
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𝑁𝑢 =  
ℎ𝐷ℎ

𝑘
           (4.9) 

In Equation (4.9), the convective heat transfer coefficient, h is calculated as follows: 

h = 
𝑞

𝑇𝑤𝑖− 𝑇𝑏
           (4.10) 

From Equation (4.15), q is the heat flux per unit area, expressed as: 
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𝑞 =  
1

𝑃

𝑑𝑄

𝑑𝑥
           (4.11) 

From the Equation (4.11), P represents the flow perimeter and x is the axial distance along the 

heated test section. 

Q = I*V           (4.12) 

The inside wall temperature (𝑇𝑤𝑖) is calculated from the outside wall temperature (𝑇𝑤𝑜) by using 

the conduction equation given as: 

𝑇𝑤𝑖 =  𝑇𝑤𝑜 −  
𝑞𝐷ℎ𝑥

2𝑘𝑠𝐿
 𝑙𝑛

𝐷𝑜

𝐷𝑖
         (4.13) 

Where L is the length, 𝐷ℎ is the hydraulic diameter of the test section, and 𝑘𝑠 is the thermal 

conductivity of the wall. The bulk fluid temperature is assumed to vary linearly from the inlet of 

the test section to the outlet and for any axial distance along the test section, it is given as 

𝑇𝑏,𝑥 =  𝑇𝑏,𝑖𝑛 +  
𝑥

𝐿
(𝑇𝑏,𝑜𝑢𝑡 −  𝑇𝑏,𝑖𝑛)        (4.14) 

Where 𝑇𝑏,𝑖𝑛the inlet fluid is bulk temperature [℃] and 𝑇𝑏,𝑜𝑢𝑡 is the outlet fluid bulk 

temperature [℃]. The experimental results were recorded at a constant heat flux of 200W/𝑚2 and 

the Reynolds number were in the range 500≤Re≤6500. Consequently, the experimental results was 

compared with the Nusselt number predictions given by the (Lienhard & Lienhard, 2015) 

correlation applicable for the laminar regime under constant heat flux boundary condition as given 

by Equations (4.15) and (4.16) respectively. The average experimental Nusselt numbers were 

calculated from the local Nusselt number using Equation (4.14) and the theoretical Nusselt 

numbers were calculated using thermophysical properties at the average fluid temperature between 

inlet and outlet of the test section. The (Lienhard & Lienhard, 2015) correlation describes the 

Nusselt number for a thermally developing flow, expressed mathematically as: 
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𝑁𝑢 = 4.364 + 0.263 (
𝑥+

2
)−0.506 exp [(−41

𝑥+

2
)]      (4.15) 

From Equation (4.20), x+ is the dimensionless distance given by: 

𝑥+ =  
2𝑥

𝐷𝑖𝑅𝑒𝑃𝑟
           (4.16) 

Figure 4.7 below show the plot between the experimental Nusselt number and the Reynolds 

number for the four duct geometries, from which it can be inferred that Nusselt number increases 

with increasing Reynolds numbers. However, the rectangular duct were observed to have the 

highest and approximate Nusselt number followed by the circular duct while the square duct 

showed the lowest Nusselt number. This observation was observed throughout the entire flow. 

 

Figure 4.7 Experimental Nusselt number vs. Reynolds number for distilled water flowing through different 

duct geometries. 
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duct geometries. Therefore, going by the fact that Nusselt number are in agreement with these 

correlations for all the duct geometries, the experimental procedure is validated and experiments 

for heat transfer measurements of the nanofluid was performed. 

 

Figure 4.8 Plot showing the experimental Nusselt number vs. dimensionless distance given by the Lienhard & 

Lienhard (2012) correlation for water flowing through the circular duct. 
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Figure 4.9 Plot showing the measured Nusselt number vs. dimensionless distance given by the Lienhard & 

Lienhard (2012) correlation for water flowing through the hexagonal duct. 

 

 

Figure 4.10 Plot showing the measured Nusselt number vs. dimensionless distance given by the Lienhard & 

Lienhard (2012) correlation for water flowing through the rectangular duct. 
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Figure 4.11 Plot showing the measured Nusselt number vs. dimensionless distance given by the Lienhard & 

Lienhard (2012) correlation for water flowing through the square duct. 
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Figure 4.12 Comparison of the thermal conductivity vs. temperature for water and NF.  
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compared to the base fluid.  
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On the other hand, for non-Newtonian fluids, the relationship between the shear stress and the 

shear rate is different and non-linear. Non-Newtonian fluids have been classified as pseudoplastic, 

dilatant, plastic, thixotropic and rheopectic fluid engineers working in the field of rheology. The 

classification of a fluid to the Newtonian and the non-Newtonian categories have been adjudged 

to extremely depend on the experimental conditions under which the measurements were made 

(Metzner & Reed, 1955). The relation of shear rate and shear stress is given for Newtonian fluid 

as follows: 

𝜏 = μ
𝑑𝑢

𝑑𝑦
          (4.17) 

From Equation (4.17), 𝜏= shear stress, 
𝑑𝑢

𝑑𝑦
= rate of shear and μ= constant of proportionality, known 

as viscosity. Any fluid not following the above relation is called a non-Newtonian fluid. The plot 

of the shear stress vs. the shear rate measured at 45℃ is shown in Figure 4.13, from which it can 

be observed that the slope is not linear. The shear stress was observed to increase with increasing 

shear rate and this type of behavior is exhibited by only shear thickening non-Newtonian fluid. 

Therefore, the silica/water nanofluid is a dilatant non-Newtonian fluid. For this type of non-

Newtonian fluids, the slope of the plot is called apparent viscosity and this viscosity increases with 

shear rate. The viscosity also increases with increasing particle concentration. 



www.manaraa.com

 

75 
 

 

             Figure 4.13 Plot of the shear stress vs. shear rate of the NF measured at 45℃. 
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temperature, the power law model was used. The power law model is widely used for relating the 
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𝜏𝑤 =
𝐷∆𝑃

4𝐿
= 𝐾′ (

8𝑉

𝐷
)

𝑛′

        (4.18) 

In Equation, (4.18), 𝑛′ (the flow behavior index is the physical property of the fluid which 

characterizes its degree of non-Newtonian behavior.) and 𝐾′(the consistency index) are the slope 

of the graph and intersect, obtained from the logarithmic plot of shear stress and shear rate 

respectively (Metzner & Reed, 1955). The greater the divergence of 𝑛′ from unity, the more non-

Newtonian is the fluid. For this experiment, the fluid 𝑛′ was range from 1.08 to 1.34 for the 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00

Sh
ea

r 
st

re
ss

 [
P

a]
 

Shear rate [1/s]



www.manaraa.com

 

76 
 

different duct geometries and the fluid can be said to be a dilatant non-Newtonian fluid because 

the value of 𝑛′ is greater than unity.  

4.4 Friction Factor Results of the Nanofluid 

 

An attempt to investigate the change in the experimental friction factors of the NF and the 

base fluid (water) in each duct geometry led to the plot shown in Figures 4.14 to 4.17 for the 

circular, rectangular, hexagonal, and square ducts respectively. In the same vein, there was no 

significant change in the experimental friction factors between the NF and water. It was however 

observed that the NF reached transition earlier compared to the water and this could be traced to 

the migration of the particles to the boundary layer causing eddies.  

Interestingly, the theoretical friction factor correlation developed for single phase fluids in 

the laminar regime as given in Equations (4.4) to (4.7) has successfully predicted the experimental 

data for the NF within ±25%. This somewhat greater deviation could be attributed to the presence 

of the nanoparticles and the inherent problems associated with colloidal suspensions such as 

sedimentation. These plots are shown in Figures 4.18 to 4.21 below. 

The friction factors for the NF are measured for the four test sections whose geometry are 

rectangular, hexagonal, circular and square; having an equal length of 12 inches and very close 

comparable hydraulic diameters. The effect of the duct geometry on the experimental values of the 

friction factors in the laminar regime was investigated through the plot of the estimated friction 

factor of each duct vs. the estimated Reynolds number for the NF flow (see Figure 4.22). From 

this graph, it was observed that all the ducts were overlapping and the effect of the duct geometry 

on the friction factor was not significant.  
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On the other hand, Figure 4.23 shows the plot comparing the experimental pressure drops 

in both the NF and water against the mass flow for the rectangular, hexagonal, circular and square 

ducts. From the graph, there was no significant difference in pressure drops for each duct for the 

water and NF flow, but it was evident that the pressure drop in the circular duct was slightly higher 

the other ducts. Also, the pressure drops of the NF and water increased with increasing Reynolds 

number. Therefore, the circular duct exhibited the highest pressure drop which is consistent with 

reported results from existing literature. 

 

Figure 4.14 Comparison of the experimental friction factor with theoretical friction factor correlation vs. 

Reynolds number for water and NF flowing through the circular duct. 
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Figure 4.15 Comparison of the experimental friction factor with theoretical friction factor correlation vs. 

Reynolds number for water and NF flowing through the hexagonal duct. 

 

 

 

Figure 4.16 Comparison of the experimental friction factor with theoretical friction factor correlation vs. 

Reynolds number for water and NF flowing through the rectangular duct. 
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Figure 4.17 Comparison of the experimental friction factor with theoretical friction factor correlation vs. 

Reynolds number for water and NF flowing through the square duct. 

 

 

Figure 4.18 Comparison of the experimental friction factor and theoretical friction factor vs. Reynolds 
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Figure 4.19 Comparison of the experimental friction factor and theoretical friction factor vs. Reynolds 

number for 9.58% by vol. silica/water nanofluid in hexagonal duct. 
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         Figure 4.21 Comparison of the experimental friction factor and theoretical friction factor vs. Reynolds 

number for 9.58% by vol. silica/water nanofluid in square duct. 

 

 

Figure 4.22 Comparison of the experimental friction factor and theoretical friction factor vs. Reynolds 

number for 9.58% by vol. silica/water nanofluid for all geometries. 
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                   Figure 4.23 Plot comparing the experimental pressure drops for all duct geometries, NF flow. 
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In Equation (4.19), 𝑥𝑒 [m] is the entry length. 

The heat transfer results of the nanofluid mostly lie in the laminar regime (although some 

ducts extended to the turbulent regime) and since this experiment is a constant heat flux condition 

such that the wall of the test sections is constantly heated and cooled so the heat flux from the wall 

to the fluid via convection remains constant and the bulk mean temperature of the nanofluid 

increases steadily at a fixed rate along the flow direction, a thermally fully developed flow was 

investigated. It has been established that the Nusselt number in a circular tube should be Nu = 4.36 

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25 30

P
re

ss
u

re
 d

ro
p

 [
P

a]

Mass flow rate [g/s]

Experimental (NF flow),
circular duct

Experimental (water flow),
circular duct

Experimental (water flow),
rectangular duct)

Experimental (NF flow),
rectangular duct

Experimental (water flow),
hexagonal duct

Experimental (NF flow),
hexagonal duct

Experimental (NF flow),
square duct

Experimental (water flow),
square duct



www.manaraa.com

 

83 
 

for fully developed laminar flow under constant heat flux conditions. However, for this experiment 

the thermal profile did not reach fully developed condition since the total length of each duct was 

smaller than the thermal entry length. Therefore, the duct was too short to achieve thermally fully 

developed flow. 

Figure 4.24 below compares the average Nusselt number vs. the Reynolds number for all 

the ducts with the intention of investigating which of the ducts give the best convective heat 

transfer behavior. The rectangular was observed to display the highest Nusselt number as the flow 

develops with increasing Reynolds number. This shows that the rectangular duct is a better 

convective heat transfer flow channel compared to the other channels. 

 

               Figure 4.24 Plot comparing the average Nusselt number vs. Reynolds number for all ducts, NF flow. 
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4.25 to 4.28 below. In all these figures, it was evident that the NF showed a higher Nusselt 

number compared to the water at all points in the flow. This confirms the claim from literature 

that NF is a better heat transfer medium compared to water. 

              

Figure 4.25 Plot comparing the experimental Nusselt number for water and NF in the rectangular 

duct. 
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                   Figure 4.26 Plot comparing the experimental Nusselt number for water and NF in the hexagonal 

duct. 

 

 

                      

               Figure 4.27 Plot comparing the experimental Nusselt number for water and NF flow through the 

circular duct. 
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       Figure 4.28 Plot comparing the experimental Nusselt number of water and NF in the square duct. 
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Figure 4.29 Nusselt number vs. dimensionless distance for 9.58% vol. silica/water NF flowing through a 

heated hexagonal duct.  

 

 

Figure 4.30 Nusselt number vs. dimensionless distance for 9.58% vol. silica/water NF flowing through a 

heated rectangular test section.  
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Figure 4.31 Nusselt number vs. dimensionless distance for 9.58% vol. silica/water NF flowing through a 

heated circular test section.  

 

                                   

Figure 4.32 Nusselt number vs. dimensionless distance for 9.58% vol. silica/water NF flowing through a 

heated square test section.  
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Also, the heat transfer performance of each duct geometry was investigated for the NF and 

water at same Reynolds number and axial distance of 4.5 inch along the length of the tube. The 

Figure 4.33 below compares the local Nusselt number vs the Reynolds number at a local axial 

distance of 4.5 in. At equal Reynolds number of approximately 2000, it can be observed that the 

rectangular cross-section have highest value of Nusselt numbers compared to the other geometries 

while the square duct was observed to have the lowest value of Nusselt number at the same 

Reynolds number. This observation shows that the rectangular duct gives a better thermal 

performance compared to the other ducts. 

 

Figure 4.33 Comparison of the Nusselt number vs. Reynolds numbers for water and NF at a local axial 

distance of x=4.5in for all duct geometries. 
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4.5.1 Convective Heat Transfer Coefficient 

The addition of nanoparticles to base fluid was proven to increase the heat transfer potential 

of nanofluids and this was also checked for all the four test sections. With the assumption that the 

losses are negligible, the heat transfer coefficient is calculated from the electrical energy supplied 

using the following relations: 

𝑄 = 𝑉 ∗ 𝐼           (4.20) 

ℎ =  
𝑄

𝐴 (𝑇𝑠− 𝑇𝑏)
           (4.21) 

In Equation (4.21),   𝑇𝑏 =  (𝑇𝑖 +  𝑇𝑜)/2       (4.22) 

The plot of the average heat transfer coefficient vs Reynolds number for the different duct 

geometries is shown in Figure 4.34. Interestingly, the heat transfer coefficient of the NF was higher 

than that of water for all the duct geometries at values of Reynolds number and this observation is 

consistent with literature which further confirms that the presence of nanoparticles caused an 

enhancement in heat transfer coefficients in the nanofluid. However, the rectangular and hexagonal 

ducts showed the highest overall heat transfer coefficient. The same observation was seen when 

all the ducts geometries are compared for NF flow only as shown in Figure 4.35 below. 



www.manaraa.com

 

91 
 

 

Figure 4.34 Comparison of the overall heat transfer coefficient vs. Reynolds numbers for water and NF 

flowing through all duct geometries. 

 

                     
 

Figure 4.35 Comparison of the overall heat transfer coefficient vs. Reynolds numbers for the NF flowing 

through all duct geometries. 
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In addition, the heat transfer coefficient of the NF and water was investigated at a local 

axial distance of 5.5 in as shown in Figure 4.36 for all the duct geometries. It was also obvious 

that the NF showed a higher heat transfer coefficient compared to water and the rectangular 

showed the highest value of heat transfer coefficient.  

 

 

Figure 4.36 Comparison of the overall heat transfer coefficient vs. Reynolds numbers for the NF flowing 

through all duct geometries. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

In this chapter, some of the observations from the result of this research in comparison with 

other available results from literature will be discussed. Ultimately, some final conclusions and 

recommendations for future research efforts in this line will be made.  

5.1 Conclusions 

 

The results of the convective heat transfer properties and pressure drop characteristics of 

silica/water nanofluids of 9.58% by volume concentration was experimentally investigated and the 

result was compared for rectangular, hexagonal, square and circular test sections. The following 

are some of the conclusions reached: 

The measured data for the thermal conductivity of the nanofluid and water was analyzed 

and compared with existing standard values from the literature. As expected, and it was observed 

that there is an obvious increase in thermal conductivity of the NF based on the addition of silica 

nanoparticles to water, i.e. nanofluid exhibited a slightly higher better thermal conductivity of 

1.5% to 4.25% compared to water. The experimental values for the viscosity of the NF were 

compared with that of water. It was observed that the viscosity of NF was higher than that of water 

which is the base fluid. Based on the available data, it was observed that the NF is shear thickening 

non-Newtonian fluid at 9.58% by volume concentration and the viscosity of the NF was estimated 

based on the power law for non-Newtonian fluids.  
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In addition, the friction factor of the NF in the laminar region can be well approximated by 

the Darcy-Weisbach equation developed for single phase fluids. Although the addition of 

nanoparticles slightly improves the convective heat transfer behavior of the base fluid but no 

significant change in the friction factor of both fluids was observed. Therefore, it can be concluded 

that the NF behaves as a conventional single phase base fluid in the laminar regime. The NF was 

observed to reach transition earlier which could be traced to the presence of nanoparticles causing 

the particle migration to the boundary layer thereby generating eddies in the boundary layer. 

Friction factor decreases with increasing Reynolds number for both fluids because increasing the 

Reynolds number reduces the pipe wall viscous drag force and the pressure drop. 

For the NF, improvement in heat transfer is higher at the thermal entrance region which is 

consistent with literature. Also, conventional correlations for single phase fluid can also be used 

for the NF to predict heat transfer performance. For instance, the correlation given by Lienhard & 

Lienhard (2015) was in good agreement with the measured values of Nusselt number for a 

thermally developing flow. Hence, the heat transfer of nanofluids can be accurately predicted by 

the correlation given for a single phase fluids in the laminar regime. 

The heat transfer coefficient of the NF was better than that of water when compared at 

same dimensionless distance and Reynolds number. This is also true for the Nusselt number 

comparison of the NF and water. Also, the decay of Nusselt number is more rapid for the nanofluid 

which shows that that the dispersion of nanoparticle affects the development of the thermal 

boundary layer. 
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5.2 Recommendations 

Due to the sensitivity of thermophysical properties, some errors might have affected the 

recorded data owing to disturbances produced by vibration and sound from the surrounding. If 

these disturbances can be eliminated or at least minimized, a better result should be achieved.  

Due to the limitation of the small rating of the pump used to supply pressure, a fully 

turbulent flow could not be achieved for most of the ducts when the NF was passed through the 

ducts. As a result, the friction factor and heat transfer results for the nanofluid was measured mostly 

in the laminar region. Hence, it is necessary to secure a pump of higher ratings which is capable 

of generating turbulent flow in the test sections for the nanofluid in order to adequately study the 

friction factor and heat transfer behavior in the turbulent region.  

The effect of increasing nanoparticle concentration should be investigated for each duct 

geometry. This is necessary in order to determine the optimal concentration at which heat transfer 

is stilled enhanced through the use of the nanofluid and also to determine the concentration at 

which the NF seizes to behave as a Newtonian fluid. Different nanofluids made from varying 

materials, particle shapes, particles sizes and concentrations should be investigated. 

Nanofluids made from liquid base fluids have been extensively studied for their capacities 

to increase the heat transfer rate compared with conventional fluids. In similar vein, the base fluid 

can be changed to gases that would dissolve in the nanofluid and following similar procedure, the 

heat transfer enhancement capability of the nanofluid-gas mixture may be investigated. An 

example of a gas to consider is air. A test section of better length should be utilized because the 

length of the test section for this experiment was 12 inches which is too short to investigate 
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thermally fully developed flow in the laminar region. However, increase in length requires 

significant pumping power. 
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